A. Surabhi, S. Parekh, K. Manikantan, S. Ramachandran
{"title":"Background removal using k-means clustering as a preprocessing technique for DWT based Face Recognition","authors":"A. Surabhi, S. Parekh, K. Manikantan, S. Ramachandran","doi":"10.1109/ICCICT.2012.6398166","DOIUrl":null,"url":null,"abstract":"Face Recognition (FR) under varying background conditions is challenging, and exacting background invariant features is an effective approach to solve this problem. In this paper, we propose a novel method for background removal based on the k-means clustering algorithm, which lays the ground for DWT-based feature extraction to enhance the performance of a FR system. Individual stages of the FR system are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO)-based feature selection algorithm is used to search the feature vector space for the optimal feature subset. Experimental results, obtained by applying the proposed algorithm on ORL, UMIST, Extended Yale B and ColorFERET databases, show that the proposed system outperforms other FR systems. A significant increase in the overall recognition rate and a substantial reduction in the number of features are observed.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Face Recognition (FR) under varying background conditions is challenging, and exacting background invariant features is an effective approach to solve this problem. In this paper, we propose a novel method for background removal based on the k-means clustering algorithm, which lays the ground for DWT-based feature extraction to enhance the performance of a FR system. Individual stages of the FR system are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO)-based feature selection algorithm is used to search the feature vector space for the optimal feature subset. Experimental results, obtained by applying the proposed algorithm on ORL, UMIST, Extended Yale B and ColorFERET databases, show that the proposed system outperforms other FR systems. A significant increase in the overall recognition rate and a substantial reduction in the number of features are observed.