Bhanu Prakash Palampalle, Babu Dharmalingam, Devika Royal
{"title":"Selection of Optimal Material from Stir Cast Aluminum Graphene Nano Platelets Composites for Aerospace Applications","authors":"Bhanu Prakash Palampalle, Babu Dharmalingam, Devika Royal","doi":"10.5772/intechopen.100478","DOIUrl":null,"url":null,"abstract":"Qualitative and quantitative requirements when selecting materials for different properties can be difficult and ambiguous. An insufficient variety of materials can lead to component malfunction and failure at any point during their service. Owing to the vast availability of dissimilar materials, material selection in the engineering design phase is difficult and elusive. This study presents an EDAS (Evaluation based on Distance from Average Solution) and VIKOR (VIse Kriterijumska Optimizacijakompromisno Resenje) techniques for effective material selection for aviation applications. In this research, the selection index value was calculated using the EDAS and VIKOR entropy-based weight techniques. The MADM (multi-attribute decision making) procedure also selects the best weight per cent combination among pure aluminum reinforced with GNPs (graphene nanoplatelets) for aircraft applications based on its physical and mechanical properties. The results demonstrate that 0.5 wt% GNPs reinforced in pure aluminum has the best combination of both physical and mechanical qualities, according to the EDAS and VIKOR multi-criteria decision-making methodologies. The composites were made using the stir casting technique. MATLAB R2020a is used to grade and compare the composite materials.","PeriodicalId":240138,"journal":{"name":"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications [Working Title]","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aluminium Alloys - Design and Development of Innovative Alloys, Manufacturing Processes and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Qualitative and quantitative requirements when selecting materials for different properties can be difficult and ambiguous. An insufficient variety of materials can lead to component malfunction and failure at any point during their service. Owing to the vast availability of dissimilar materials, material selection in the engineering design phase is difficult and elusive. This study presents an EDAS (Evaluation based on Distance from Average Solution) and VIKOR (VIse Kriterijumska Optimizacijakompromisno Resenje) techniques for effective material selection for aviation applications. In this research, the selection index value was calculated using the EDAS and VIKOR entropy-based weight techniques. The MADM (multi-attribute decision making) procedure also selects the best weight per cent combination among pure aluminum reinforced with GNPs (graphene nanoplatelets) for aircraft applications based on its physical and mechanical properties. The results demonstrate that 0.5 wt% GNPs reinforced in pure aluminum has the best combination of both physical and mechanical qualities, according to the EDAS and VIKOR multi-criteria decision-making methodologies. The composites were made using the stir casting technique. MATLAB R2020a is used to grade and compare the composite materials.