{"title":"Engineering Application and Research Progress of Low-Level Radioactive Waste Incineration Technology in China","authors":"Chu Haoran, Xu Wei, Zheng Bowen, Ru Jiasheng","doi":"10.1115/icone29-93364","DOIUrl":null,"url":null,"abstract":"\n China Institute for Radiation Protection had independently developed a multi-purpose radioactive waste pyrolysis incineration technology and built 3 incineration facilities in China, which were mainly used to treat solid waste and waste oil from nuclear facilities such as NPPs. The composition of solid waste included paper, cloth, plastic, rubber, etc. In order to solve the problems in the early operation of incineration facilities, targeted improvements had been made in the aspects of equipment anti-corrosion capability, secondary waste generation and system safety. The improved facilities had treated a large amount of low-level waste and operated for more than 15 years. The stability and reliability of the incineration system were verified, and the advancement of pyrolysis incineration technology was proved.\n Considering the current situation that the proportion of plastics in low-level waste is increasing, the process was optimized so that more plastics and resin can be incinerated. The optimized incineration system still showed good adaptability when the proportion of plastic in the waste composition over 60%. The research on miniaturization and mobile technology of incineration were continuously carried out for the small reactors or small nuclear facilities, so as to further improve the economy. Compared with the incineration facilities, the mobile incineration technology can reduce the floor space by more than 90% and cut the construction cost by more than 75% under the same capacity and meeting the emission requirements.","PeriodicalId":249213,"journal":{"name":"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-93364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
China Institute for Radiation Protection had independently developed a multi-purpose radioactive waste pyrolysis incineration technology and built 3 incineration facilities in China, which were mainly used to treat solid waste and waste oil from nuclear facilities such as NPPs. The composition of solid waste included paper, cloth, plastic, rubber, etc. In order to solve the problems in the early operation of incineration facilities, targeted improvements had been made in the aspects of equipment anti-corrosion capability, secondary waste generation and system safety. The improved facilities had treated a large amount of low-level waste and operated for more than 15 years. The stability and reliability of the incineration system were verified, and the advancement of pyrolysis incineration technology was proved.
Considering the current situation that the proportion of plastics in low-level waste is increasing, the process was optimized so that more plastics and resin can be incinerated. The optimized incineration system still showed good adaptability when the proportion of plastic in the waste composition over 60%. The research on miniaturization and mobile technology of incineration were continuously carried out for the small reactors or small nuclear facilities, so as to further improve the economy. Compared with the incineration facilities, the mobile incineration technology can reduce the floor space by more than 90% and cut the construction cost by more than 75% under the same capacity and meeting the emission requirements.