State-dependent impulsive observer design for nonlinear time-delay systems

N. Kalamian, H. Khaloozadeh, M. Ayati
{"title":"State-dependent impulsive observer design for nonlinear time-delay systems","authors":"N. Kalamian, H. Khaloozadeh, M. Ayati","doi":"10.1109/ICCIAUTOM.2017.8258675","DOIUrl":null,"url":null,"abstract":"This paper has proposed a new state-dependent impulsive observer (SDIO) for nonlinear time-delay systems. This observer is based on extended pseudo-linearization, and its parameters are state-dependent. The SDIO is capable to estimate system states continuously by using system output that is just available at discrete impulse times. The stability of the proposed observer is proved by using time-varying Lyapunov function, and comparison system theory of impulsive differential equation systems. By new theorem, it is guaranteed that the estimation error asymptotically converges to zero under well-defined, and less-conservative sufficient conditions. Furthermore, the stability theorem gave an upper bound on the maximum allowable time interval between consequent impulses. The simulation results show effectiveness, and good performance of the proposed observer, for a wider classes of nonlinear time-delay systems.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper has proposed a new state-dependent impulsive observer (SDIO) for nonlinear time-delay systems. This observer is based on extended pseudo-linearization, and its parameters are state-dependent. The SDIO is capable to estimate system states continuously by using system output that is just available at discrete impulse times. The stability of the proposed observer is proved by using time-varying Lyapunov function, and comparison system theory of impulsive differential equation systems. By new theorem, it is guaranteed that the estimation error asymptotically converges to zero under well-defined, and less-conservative sufficient conditions. Furthermore, the stability theorem gave an upper bound on the maximum allowable time interval between consequent impulses. The simulation results show effectiveness, and good performance of the proposed observer, for a wider classes of nonlinear time-delay systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性时滞系统的状态相关脉冲观测器设计
针对非线性时滞系统,提出了一种新的状态相关脉冲观测器。该观测器基于扩展伪线性化,其参数是状态相关的。SDIO能够利用在离散脉冲时间可用的系统输出连续估计系统状态。利用时变李雅普诺夫函数和脉冲微分方程系统的比较系统理论证明了该观测器的稳定性。利用新的定理,保证了估计误差在良好定义的非保守性充分条件下渐近收敛于零。此外,稳定性定理给出了随性脉冲间最大允许时间间隔的上界。仿真结果表明,该观测器对于更广泛的非线性时滞系统具有良好的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete linear quadratic control of uncertain switched system Fractional order adaptive fuzzy terminal sliding mode controller design for a knee joint orthosis with nonlinear disturbance observer Kalman filter based sensor fault detection and identification in an electro-pump system Comparison of iterative and recursive algorithms for identifying a solar power plant system State estimation of VTOL octorotor for altitude control by using hybrid extended Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1