Analysis of CBDC Narrative OF Central Banks using Large Language Models

Andres Alonso-Robisco, Jose Manuel Carbo
{"title":"Analysis of CBDC Narrative OF Central Banks using Large Language Models","authors":"Andres Alonso-Robisco, Jose Manuel Carbo","doi":"10.53479/33412","DOIUrl":null,"url":null,"abstract":"Central banks are increasingly using verbal communication for policymaking, focusing not only on traditional monetary policy, but also on a broad set of topics. One such topic is central bank digital currency (CBDC), which is attracting attention from the international community. The complex nature of this project means that it must be carefully designed to avoid unintended consequences, such as financial instability. We propose the use of different Natural Language Processing (NLP) techniques to better understand central banks’ stance towards CBDC, analyzing a set of central bank discourses from 2016 to 2022. We do this using traditional techniques, such as dictionary-based methods, and two large language models (LLMs), namely Bert and ChatGPT, concluding that LLMs better reflect the stance identified by human experts. In particular, we observe that ChatGPT exhibits a higher degree of alignment because it can capture subtler information than BERT. Our study suggests that LLMs are an effective tool to improve sentiment measurements for policy-specific texts, though they are not infallible and may be subject to new risks, like higher sensitivity to the length of texts, and prompt engineering.","PeriodicalId":296461,"journal":{"name":"Documentos de Trabajo","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documentos de Trabajo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53479/33412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Central banks are increasingly using verbal communication for policymaking, focusing not only on traditional monetary policy, but also on a broad set of topics. One such topic is central bank digital currency (CBDC), which is attracting attention from the international community. The complex nature of this project means that it must be carefully designed to avoid unintended consequences, such as financial instability. We propose the use of different Natural Language Processing (NLP) techniques to better understand central banks’ stance towards CBDC, analyzing a set of central bank discourses from 2016 to 2022. We do this using traditional techniques, such as dictionary-based methods, and two large language models (LLMs), namely Bert and ChatGPT, concluding that LLMs better reflect the stance identified by human experts. In particular, we observe that ChatGPT exhibits a higher degree of alignment because it can capture subtler information than BERT. Our study suggests that LLMs are an effective tool to improve sentiment measurements for policy-specific texts, though they are not infallible and may be subject to new risks, like higher sensitivity to the length of texts, and prompt engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大语言模型的中央银行CBDC叙事分析
中央银行越来越多地使用口头沟通来制定政策,不仅关注传统的货币政策,还关注一系列广泛的话题。其中一个话题是央行数字货币(CBDC),这引起了国际社会的关注。这个项目的复杂性意味着它必须精心设计,以避免意想不到的后果,比如金融不稳定。我们建议使用不同的自然语言处理(NLP)技术来更好地理解中央银行对CBDC的立场,分析了2016年至2022年中央银行的一组话语。我们使用传统技术,如基于字典的方法,以及两个大型语言模型(llm),即Bert和ChatGPT,得出的结论是llm更好地反映了人类专家识别的立场。特别是,我们观察到ChatGPT表现出更高程度的一致性,因为它可以捕获比BERT更微妙的信息。我们的研究表明,llm是一种有效的工具,可以改善对特定于政策的文本的情感测量,尽管它们不是绝对正确的,并且可能受到新的风险的影响,比如对文本长度的更高敏感性,以及提示工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Green energy transition and vulnerability to external shocks Access to credit and firm survival during a crisis: the case of zero-bank-debt firms Shadow seniority? Lending relationships and borrowers’ selective default Stabilisation properties of a sure-like European unemployment insurance The effects of the ECB’s unconventional monetary policies from 2011 to 2018 on banking assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1