Parameter co-evolution mechanism of particle swarm optimisation algorithm

Yichen Gao, Mingde Zhao, Xiaoyu Song
{"title":"Parameter co-evolution mechanism of particle swarm optimisation algorithm","authors":"Yichen Gao, Mingde Zhao, Xiaoyu Song","doi":"10.1504/ijspm.2020.10029339","DOIUrl":null,"url":null,"abstract":"The running parameters are the important factors that influence the performance of PSO, and the optimisation of the selection and the adjustment strategy on them is one of the hot research directions. Based on the related research, this paper designs a co-evolution mechanism for the parameters of PSO including both the inertia weight and the acceleration factors, which defines stochastic evolution speed to reflect the current state of population evolution during the iterative process, and uses it as the feedback to set the inertia weight and the two acceleration factors. PSO with the parameter co-evolution mechanism can realise cooperative evolution of the running parameters with the population by dynamically adjusting parameter values according to population evolution state. Compared with five widely recognised parameter selection or adjustment strategies, on 20 numerical optimisation benchmark functions of different categories, the effectiveness and the efficiency of the proposed mechanism are verified.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2020.10029339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The running parameters are the important factors that influence the performance of PSO, and the optimisation of the selection and the adjustment strategy on them is one of the hot research directions. Based on the related research, this paper designs a co-evolution mechanism for the parameters of PSO including both the inertia weight and the acceleration factors, which defines stochastic evolution speed to reflect the current state of population evolution during the iterative process, and uses it as the feedback to set the inertia weight and the two acceleration factors. PSO with the parameter co-evolution mechanism can realise cooperative evolution of the running parameters with the population by dynamically adjusting parameter values according to population evolution state. Compared with five widely recognised parameter selection or adjustment strategies, on 20 numerical optimisation benchmark functions of different categories, the effectiveness and the efficiency of the proposed mechanism are verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化算法的参数协同进化机制
运行参数是影响粒子群性能的重要因素,其选择和调整策略的优化是当前研究的热点之一。在相关研究的基础上,设计了包含惯性权值和加速度因子的粒子群优化算法参数协同进化机制,定义了反映迭代过程中种群进化现状的随机进化速度,并以此作为反馈来设置惯性权值和两个加速度因子。基于参数协同进化机制的粒子群算法可以根据种群进化状态动态调整参数值,实现运行参数与种群的协同进化。与五种广泛认可的参数选择或调整策略进行比较,在20个不同类别的数值优化基准函数上验证了所提机制的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1