Global and local gravitational redshifts in cosmology and their consequences for theory and observations

Zahid Zakir
{"title":"Global and local gravitational redshifts in cosmology and their consequences for theory and observations","authors":"Zahid Zakir","doi":"10.9751/qgph.2-011.7528","DOIUrl":null,"url":null,"abstract":"A consistent theory of gravitational redshift in cosmology (GRC) is formulated. The global GRC arises due to weakening of gravitational time dilation due to decreasing of matter density during the propagation time of photons. In the expanding world the local GRC arises due to the weakening of gravity of the sphere between observer and source, since photons emitted at a smaller radius arrive at a larger one. In static world there is no GRC at the exchange of photons at the periphery of this sphere. In any case photons from observer to source have the same GRC as photons from source to observer, which is in agreement with the cosmological principle. Consequences of the local and global GRC for cosmological models and their parameters, as well as corrections to data on distant objects and CMB, are considered. In Appendix the inconsistency of two former treatments of the gravitational frequency shift in cosmology is shown. They: a) did not take into account the global GRC; b) derived the local GRC not from the field of the sphere between the source and observer, but from the field of spheres around one of them; c) contradicted each other (the signs of shifts are opposite); d) violated cosmological principle (changing the propagation direction changes the sign of shift) and e) were based on the delusion that the Friedmann model supposedly contains the gravitational shift.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QUANTUM AND GRAVITATIONAL PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9751/qgph.2-011.7528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A consistent theory of gravitational redshift in cosmology (GRC) is formulated. The global GRC arises due to weakening of gravitational time dilation due to decreasing of matter density during the propagation time of photons. In the expanding world the local GRC arises due to the weakening of gravity of the sphere between observer and source, since photons emitted at a smaller radius arrive at a larger one. In static world there is no GRC at the exchange of photons at the periphery of this sphere. In any case photons from observer to source have the same GRC as photons from source to observer, which is in agreement with the cosmological principle. Consequences of the local and global GRC for cosmological models and their parameters, as well as corrections to data on distant objects and CMB, are considered. In Appendix the inconsistency of two former treatments of the gravitational frequency shift in cosmology is shown. They: a) did not take into account the global GRC; b) derived the local GRC not from the field of the sphere between the source and observer, but from the field of spheres around one of them; c) contradicted each other (the signs of shifts are opposite); d) violated cosmological principle (changing the propagation direction changes the sign of shift) and e) were based on the delusion that the Friedmann model supposedly contains the gravitational shift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宇宙学中的全球和局部引力红移及其对理论和观测的影响
提出了宇宙学中引力红移(GRC)的一致理论。全局GRC的产生是由于在光子传播过程中物质密度的减小导致引力时间膨胀的减弱。在膨胀的世界中,由于以较小半径发射的光子到达较大半径,因此由于观察者和源之间的球体引力减弱而产生局部GRC。在静态世界中,在球体外围的光子交换处不存在GRC。在任何情况下,从观察者到源的光子与从源到观察者的光子具有相同的GRC,这与宇宙学原理是一致的。考虑了局部和全局GRC对宇宙学模型及其参数的影响,以及对遥远天体和CMB数据的修正。在附录中说明了宇宙学中引力频移的前两种处理方法的不一致性。它们:a)没有考虑到全球GRC;b)不是从源和观测者之间的球场,而是从其中一个球周围的球场推导出局部GRC;C)相互矛盾(转变的迹象是相反的);d)违反了宇宙学原理(改变传播方向会改变位移的符号),e)基于一种错觉,即弗里德曼模型应该包含引力位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-symmetric quantization of relativistic fields. 2. Electroweak theory. Observable effects of TSQ Time-symmetric quantization of relativistic fields. 1. Complex fields, massless gauge fields and gravitons Metrics with irreducible mass leading to a correct parameter dependence of gravitational effects around charged and rotating bodies On solutions of problems of 20th century physics and foundations of theoretical physics of 21st century Consistent quantization of systems with positive and negative energy states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1