{"title":"Adaptive Flow Rate Control of a Hydraulic Proportional Valve","authors":"J. Lai, Yuan-Rong Chen","doi":"10.1299/JSMEC1988.35.582","DOIUrl":null,"url":null,"abstract":"The use of hydraulic proportional valves in industry is becoming increasingly popular as they have better performance than conventional on-off valves and lower cost than servovalves. However, due to significant time delay in valve dynamics, they are currently used for low-accuracy and low-dynamics applications. In this study, an adaptive self-tuning controller is proposed to enable a hydraulic proportional valve to achieve accurate set-point flow rate control. A moving model which reduces the system order and hence reduces the identification effort was used for the controller design. The controller is based on the pole-placement technique which shifts the dominant pole to the desired location. In addition, a predictor has been proposed to overcome the effect of the time delay. Experimental results have shown that the proposed self-tuning controller is better than the conventional PI controller as both transient oscillation and steady-state error shown in the PI control have been significantly reduced. Also, the performance of the closed-loop system is very robust as the system response remains the same under Various operating conditions.","PeriodicalId":356058,"journal":{"name":"JSME international journal. Series 3, Vibration, control engineering, engineering for industry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series 3, Vibration, control engineering, engineering for industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEC1988.35.582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The use of hydraulic proportional valves in industry is becoming increasingly popular as they have better performance than conventional on-off valves and lower cost than servovalves. However, due to significant time delay in valve dynamics, they are currently used for low-accuracy and low-dynamics applications. In this study, an adaptive self-tuning controller is proposed to enable a hydraulic proportional valve to achieve accurate set-point flow rate control. A moving model which reduces the system order and hence reduces the identification effort was used for the controller design. The controller is based on the pole-placement technique which shifts the dominant pole to the desired location. In addition, a predictor has been proposed to overcome the effect of the time delay. Experimental results have shown that the proposed self-tuning controller is better than the conventional PI controller as both transient oscillation and steady-state error shown in the PI control have been significantly reduced. Also, the performance of the closed-loop system is very robust as the system response remains the same under Various operating conditions.