{"title":"Architecture of a digital PFM controller for IC implementation","authors":"G. Capponi, P. Livreri, G. Di Blasi, F. Marino","doi":"10.1109/CIPE.2004.1428126","DOIUrl":null,"url":null,"abstract":"This paper presents a digital controller architecture oriented to IC implementation. The classical digital pulse width modulator (D-PWM), using digital analog converter (DAC), is replaced with a Sigma-Delta (/spl Sigma//spl Delta/) modulator based on pulse frequency modulator (PFM) technique. Results of an investigation from a prototype for DC-DC converter, in terms of simulated and experimental performances, are reported, together with harmonic frequency investigation. The control function design is implemented on a field programmable gate array (FPGA). As a consequence of good agreement between simulated and experimental results, the proposed architecture realizes a digital control loop with dynamic performances comparable to analog control systems.","PeriodicalId":137483,"journal":{"name":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE Workshop on Computers in Power Electronics, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPE.2004.1428126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a digital controller architecture oriented to IC implementation. The classical digital pulse width modulator (D-PWM), using digital analog converter (DAC), is replaced with a Sigma-Delta (/spl Sigma//spl Delta/) modulator based on pulse frequency modulator (PFM) technique. Results of an investigation from a prototype for DC-DC converter, in terms of simulated and experimental performances, are reported, together with harmonic frequency investigation. The control function design is implemented on a field programmable gate array (FPGA). As a consequence of good agreement between simulated and experimental results, the proposed architecture realizes a digital control loop with dynamic performances comparable to analog control systems.