Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li
{"title":"Online Decentralized Task Allocation Optimization for Edge Collaborative Networks","authors":"Yaqiang Zhang, Ruyang Li, Yaqian Zhao, Rengang Li, Xuelei Li, Tuo Li","doi":"10.1109/ISCC55528.2022.9912855","DOIUrl":null,"url":null,"abstract":"In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In centralized task allocation strategies, real-time status information needs to be collected from distributed edge nodes. Therefore, the overloaded transmission on backbone network appears and leads to devastating decrease in the per-formance of centralized strategies. To address this issue, this paper proposes a multi-agent deep reinforcement learning based online decentralized task allocation mechanism, where each edge node makes task allocation decisions based on local network-state information. A centralized-training distributed-execution method is adopted to decrease data transmission load, and a value decomposition-based technique is applied at training stage for improving long-term performance of task allocation in edge col-laborative networks. Extensive experiments are conducted, and evaluation results demonstrate that our mechanism outperforms other three baseline algorithms in reducing the long-term average system delay and improving request completion rate.