Information-Driven Business Cycles: A Primal Approach

R. Chahrour, R. Ulbricht
{"title":"Information-Driven Business Cycles: A Primal Approach","authors":"R. Chahrour, R. Ulbricht","doi":"10.2139/ssrn.3135375","DOIUrl":null,"url":null,"abstract":"We develop a methodology to estimate DSGE models with incomplete information, free of parametric restrictions on information structures. First, we define a “primal” economy in which deviations from full information are captured by wedges in agents' equilibrium expectations. Second, we provide implementability conditions, which ensure the existence of an information structure that implements these wedges. We apply the approach to estimate a New Keynesian model in which firms, households and the monetary authority have dispersed information about business conditions and productivity is the only aggregate fundamental. The estimated model fits the data remarkably well, with informational shocks able to account for the majority of U.S. business cycles. Output is driven mainly by household sentiments, whereas firm errors largely determine inflation. Our estimation indicates that firms and the central bank learn the aggregate state of the economy quickly, while household confusion about aggregate conditions is sizable and persistent.","PeriodicalId":291048,"journal":{"name":"ERN: Business Fluctuations; Cycles (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Business Fluctuations; Cycles (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3135375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a methodology to estimate DSGE models with incomplete information, free of parametric restrictions on information structures. First, we define a “primal” economy in which deviations from full information are captured by wedges in agents' equilibrium expectations. Second, we provide implementability conditions, which ensure the existence of an information structure that implements these wedges. We apply the approach to estimate a New Keynesian model in which firms, households and the monetary authority have dispersed information about business conditions and productivity is the only aggregate fundamental. The estimated model fits the data remarkably well, with informational shocks able to account for the majority of U.S. business cycles. Output is driven mainly by household sentiments, whereas firm errors largely determine inflation. Our estimation indicates that firms and the central bank learn the aggregate state of the economy quickly, while household confusion about aggregate conditions is sizable and persistent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息驱动的商业周期:一种原始方法
我们开发了一种方法来估计不完全信息的DSGE模型,不受信息结构的参数限制。首先,我们定义了一个“原始”经济,在这个经济中,与完全信息的偏差被主体均衡预期中的楔子捕获。其次,我们提供可实现性条件,确保存在实现这些楔形的信息结构。我们运用这种方法来估计一个新凯恩斯主义模型,在这个模型中,企业、家庭和货币当局分散了有关商业状况的信息,生产率是唯一的综合基本面。估计模型与数据非常吻合,信息冲击能够解释美国大多数商业周期。产出主要由家庭情绪驱动,而企业失误在很大程度上决定了通胀。我们的估计表明,企业和中央银行对经济的总体状况了解得很快,而家庭对总体状况的困惑是相当大且持久的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Aggregate Fluctuations on Superstar Business Formation Equity Risk Factors for the Long and Short Run: Pricing and Performance at Different Frequencies Heterogeneity in Manufacturing Growth Risk Dating the Euro Area Business Cycle: An Evaluation The Impact of Investment-Specific Technology Shocks on Macroeconomics Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1