Optimization algorithms for big data with application in wireless networks

Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun, Z. Luo
{"title":"Optimization algorithms for big data with application in wireless networks","authors":"Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun, Z. Luo","doi":"10.1017/CBO9781316162750.004","DOIUrl":null,"url":null,"abstract":"This chapter proposes the use of modern first-order large-scale optimization techniques to manage a cloudbased densely deployed next-generation wireless network. In the first part of the chapter we survey a few popular first-order methods for large-scale optimization, including the block coordinate descent (BCD) method, the block successive upper-bound minimization (BSUM) method and the alternating direction method of multipliers (ADMM). In the second part of the chapter, we show that many difficult problems in managing large wireless networks can be solved efficiently and in a parallel manner, by modern first-order optimization methods. Extensive numerical results are provided to demonstrate the benefit of the proposed approach. Disciplines Signal Processing | Systems and Communications | Systems Engineering Comments This is a chapter published as Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun and Zhi-Quan Luo \"Optimization Algorithms for Big Data with Application in Wireless Networks,\" in Big Data over Networks, ed. Shuguang Cui, Alfred O. Hero III, Zhi-quan Luo, and Jose M. F. Moura (Cambridge: Cambridge University Press, 2016), pp. 66-100. Posted with permission. This book chapter is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/imse_pubs/171 I 3 Optimization algorithms for big data with application in wireless networks Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun, and Zhi-Quan Luo This chapter proposes the use of modern first-order large-scale optimization techniques to manage a cloud-based densely deployed next-generation wireless network. In the first part of the chapter we survey a few popular first-order methods for large-scale optimization, including the block coordinate descent (BCD) method, the block successive upper-bound minimization (BSUM) method and the alternating direction method of multipliers (ADMM). In the second part of the chapter, we show that many difficult problems in managing large wireless networks can be solved efficiently and in a parallel manner, by modern first-order optimization methods. Extensive numerical results are provided to demonstrate the benefit of the proposed approach.","PeriodicalId":415319,"journal":{"name":"Big Data over Networks","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data over Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781316162750.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This chapter proposes the use of modern first-order large-scale optimization techniques to manage a cloudbased densely deployed next-generation wireless network. In the first part of the chapter we survey a few popular first-order methods for large-scale optimization, including the block coordinate descent (BCD) method, the block successive upper-bound minimization (BSUM) method and the alternating direction method of multipliers (ADMM). In the second part of the chapter, we show that many difficult problems in managing large wireless networks can be solved efficiently and in a parallel manner, by modern first-order optimization methods. Extensive numerical results are provided to demonstrate the benefit of the proposed approach. Disciplines Signal Processing | Systems and Communications | Systems Engineering Comments This is a chapter published as Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun and Zhi-Quan Luo "Optimization Algorithms for Big Data with Application in Wireless Networks," in Big Data over Networks, ed. Shuguang Cui, Alfred O. Hero III, Zhi-quan Luo, and Jose M. F. Moura (Cambridge: Cambridge University Press, 2016), pp. 66-100. Posted with permission. This book chapter is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/imse_pubs/171 I 3 Optimization algorithms for big data with application in wireless networks Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun, and Zhi-Quan Luo This chapter proposes the use of modern first-order large-scale optimization techniques to manage a cloud-based densely deployed next-generation wireless network. In the first part of the chapter we survey a few popular first-order methods for large-scale optimization, including the block coordinate descent (BCD) method, the block successive upper-bound minimization (BSUM) method and the alternating direction method of multipliers (ADMM). In the second part of the chapter, we show that many difficult problems in managing large wireless networks can be solved efficiently and in a parallel manner, by modern first-order optimization methods. Extensive numerical results are provided to demonstrate the benefit of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据优化算法及其在无线网络中的应用
本章提出使用现代一阶大规模优化技术来管理基于云的密集部署的下一代无线网络。在本章的第一部分,我们概述了几种常用的一阶大规模优化方法,包括块坐标下降法(BCD)、块连续上界最小化法(BSUM)和乘法器交替方向法(ADMM)。在本章的第二部分,我们展示了管理大型无线网络的许多难题可以通过现代一阶优化方法以并行的方式有效地解决。大量的数值结果证明了该方法的优越性。洪明义、廖维成、孙若宇、罗志全《无线网络大数据优化算法》,载于《网络大数据》崔曙光、Alfred O. Hero III、罗志全、Jose M. F. Moura(剑桥:剑桥大学出版社,2016),第66-100页。经许可发布。本章可在爱荷华州立大学数字存储库:https://lib.dr.iastate.edu/imse_pubs/171 I 3无线网络中大数据应用的优化算法洪明义,廖维成,孙若宇,罗志全本章提出使用现代一阶大规模优化技术来管理基于云的密集部署的下一代无线网络。在本章的第一部分,我们概述了几种常用的一阶大规模优化方法,包括块坐标下降法(BCD)、块连续上界最小化法(BSUM)和乘法器交替方向法(ADMM)。在本章的第二部分,我们展示了管理大型无线网络的许多难题可以通过现代一阶优化方法以并行的方式有效地解决。大量的数值结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparsity-aware distributed learning Big data processing for smart grid security Tensor models: solution methods and applications Inference of gene networks associated with the host response to infectious disease A unified distributed algorithm for non-cooperative games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1