Stock Market Prediction Using Time Series Analysis

Kamalakannan J, I. Sengupta, Snehaa Chaudhury
{"title":"Stock Market Prediction Using Time Series Analysis","authors":"Kamalakannan J, I. Sengupta, Snehaa Chaudhury","doi":"10.2139/ssrn.3168423","DOIUrl":null,"url":null,"abstract":"Stock market is a market that enables seamless exchange of buying and selling of company stocks. Every Stock Exchange has their own Stock Index value. Index is the average value that is calculated by combining several stocks. This helps in representing the entire stock market and predicting the market’s movement over time. The Equity market can have a profound impact on people and the country’s economy as a whole. Therefore, predicting the stock trends in an effective manner can minimize the risk of investing and maximize profit. In our paper, we are using the Time Series Forecasting methodology for predicting and visualizing the predictions. Our focus for prediction will be based on the technical analysis using historic data and ARIMA Model. Autoregressive Integrated Moving Average (ARIMA) model has been used extensively in the field of finance and economics as it is known to be robust, efficient and has a strong potential for short-term share market prediction.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3168423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Stock market is a market that enables seamless exchange of buying and selling of company stocks. Every Stock Exchange has their own Stock Index value. Index is the average value that is calculated by combining several stocks. This helps in representing the entire stock market and predicting the market’s movement over time. The Equity market can have a profound impact on people and the country’s economy as a whole. Therefore, predicting the stock trends in an effective manner can minimize the risk of investing and maximize profit. In our paper, we are using the Time Series Forecasting methodology for predicting and visualizing the predictions. Our focus for prediction will be based on the technical analysis using historic data and ARIMA Model. Autoregressive Integrated Moving Average (ARIMA) model has been used extensively in the field of finance and economics as it is known to be robust, efficient and has a strong potential for short-term share market prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票市场预测使用时间序列分析
股票市场是一个可以无缝买卖公司股票的市场。每个证券交易所都有自己的股票指数值。指数是由几只股票组合而成的平均值。这有助于代表整个股票市场并预测市场随时间的变化。股票市场可以对人民和整个国家的经济产生深远的影响。因此,有效地预测股票走势可以使投资风险最小化,利润最大化。在我们的论文中,我们使用时间序列预测方法来预测和可视化预测。我们的预测重点将基于使用历史数据和ARIMA模型的技术分析。自回归综合移动平均(ARIMA)模型以其鲁棒性、有效性和对短期股票市场的预测潜力而被广泛应用于金融和经济领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Returns Out of Sample: A Naïve Model Averaging Approach Forecasting with Deep Temporal Hierarchies Liquidity and Mispricing Charting By Machines Lawrence R. Klein’s Principles in Modeling and Contributions in Nowcasting, Real-Time Forecasting, and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1