Digital protective relaying using an adaptive neural network

P. Dash, D. Swain, H. Khincha, A. Liew
{"title":"Digital protective relaying using an adaptive neural network","authors":"P. Dash, D. Swain, H. Khincha, A. Liew","doi":"10.1109/EMPD.1995.500811","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to the estimation of voltage and current phasors of a faulted power system by using an adaptive neural network represented by adalines. The neural estimator uses a nonlinear weight adjustment algorithm for the effective rejection of DC offset and noise. The fault apparent resistance, reactance and fault location of a typical transmission line are calculated using the estimated phasors. The results are quite comparable to the Kalman filter approach which requires more computation than the existing approach.","PeriodicalId":447674,"journal":{"name":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1995.500811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a new approach to the estimation of voltage and current phasors of a faulted power system by using an adaptive neural network represented by adalines. The neural estimator uses a nonlinear weight adjustment algorithm for the effective rejection of DC offset and noise. The fault apparent resistance, reactance and fault location of a typical transmission line are calculated using the estimated phasors. The results are quite comparable to the Kalman filter approach which requires more computation than the existing approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字保护继电器采用自适应神经网络
本文提出了一种用直线表示的自适应神经网络估计故障电力系统电压相和电流相量的新方法。神经估计器采用非线性权值调整算法,有效抑制直流偏置和噪声。利用估计相量计算了典型输电线路的故障视电阻、电抗和故障位置。结果与卡尔曼滤波方法相当,卡尔曼滤波方法比现有方法需要更多的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer studies of high-voltage motor switching transients A study on the fault indentification of underground cable using neural networks The technical efficiency of developing country electricity systems A method for cost benefit analysis of distribution automation Statistical standards and pollution estimation of harmonics in a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1