Flexible batched sparse matrix-vector product on GPUs

H. Anzt, Gary Collins, J. Dongarra, Goran Flegar, E. S. Quintana‐Ortí
{"title":"Flexible batched sparse matrix-vector product on GPUs","authors":"H. Anzt, Gary Collins, J. Dongarra, Goran Flegar, E. S. Quintana‐Ortí","doi":"10.1145/3148226.3148230","DOIUrl":null,"url":null,"abstract":"We propose a variety of batched routines for concurrently processing a large collection of small-size, independent sparse matrix-vector products (SpMV) on graphics processing units (GPUs). These batched SpMV kernels are designed to be flexible in order to handle a batch of matrices which differ in size, nonzero count, and nonzero distribution. Furthermore, they support three most commonly used sparse storage formats: CSR, COO and ELL. Our experimental results on a state-of-the-art GPU reveal performance improvements of up to 25X compared to non-batched SpMV routines.","PeriodicalId":440657,"journal":{"name":"Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3148226.3148230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a variety of batched routines for concurrently processing a large collection of small-size, independent sparse matrix-vector products (SpMV) on graphics processing units (GPUs). These batched SpMV kernels are designed to be flexible in order to handle a batch of matrices which differ in size, nonzero count, and nonzero distribution. Furthermore, they support three most commonly used sparse storage formats: CSR, COO and ELL. Our experimental results on a state-of-the-art GPU reveal performance improvements of up to 25X compared to non-batched SpMV routines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gpu上的柔性批处理稀疏矩阵向量积
我们提出了各种批处理例程,用于在图形处理单元(gpu)上并发处理大量小尺寸,独立稀疏矩阵向量积(SpMV)。这些批处理的SpMV内核被设计得非常灵活,以便处理一批大小、非零计数和非零分布不同的矩阵。此外,它们还支持三种最常用的稀疏存储格式:CSR、COO和ELL。我们在最先进的GPU上的实验结果显示,与非批处理SpMV例程相比,性能提高高达25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating half precision arithmetic to accelerate dense linear system solvers Dynamic load balancing of massively parallel unstructured meshes Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems Analyzing the criticality of transient faults-induced SDCS on GPU applications Parallel jaccard and related graph clustering techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1