A Fast and Efficient No-Reference Video Quality Assessment Algorithm Using Video Action Recognition Features

N. Suresh, Pavan Manesh Mylavarapu, Naga Sailaja Mahankali, Sumohana S. Channappayya
{"title":"A Fast and Efficient No-Reference Video Quality Assessment Algorithm Using Video Action Recognition Features","authors":"N. Suresh, Pavan Manesh Mylavarapu, Naga Sailaja Mahankali, Sumohana S. Channappayya","doi":"10.1109/NCC55593.2022.9806466","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of efficient noreference video quality assessment (NR-VQA). The motivation for this work is that even the best and fastest VQA algorithms do not achieve real-time performance. The speed of quality evaluation is impeded primarily by the spatio-temporal feature extraction stage. This impediment is common to both traditional as well as deep learning models. To address this issue, we explore the efficacy of features used in the action recognition problem for NR- VQA. Specifically, we leverage the efficiency offered by Gate Shift Module (GSM) in extracting spatio-temporal features. A simple yet effective improvement to the GSM model is proposed by adding the self-attention module. We first show that GSM features are indeed effective for NR-VQA. We then demonstrate a speed-up that is orders of magnitude faster than the current state-of-the-art VQA algorithms, albeit at the cost of overall performance. We evaluate the efficacy of our algorithm on both Standard Dynamic Range (SDR) and High Dynamic Range (HDR) datasets like KoNViD-1K, LIVE VQC, HDR.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work addresses the problem of efficient noreference video quality assessment (NR-VQA). The motivation for this work is that even the best and fastest VQA algorithms do not achieve real-time performance. The speed of quality evaluation is impeded primarily by the spatio-temporal feature extraction stage. This impediment is common to both traditional as well as deep learning models. To address this issue, we explore the efficacy of features used in the action recognition problem for NR- VQA. Specifically, we leverage the efficiency offered by Gate Shift Module (GSM) in extracting spatio-temporal features. A simple yet effective improvement to the GSM model is proposed by adding the self-attention module. We first show that GSM features are indeed effective for NR-VQA. We then demonstrate a speed-up that is orders of magnitude faster than the current state-of-the-art VQA algorithms, albeit at the cost of overall performance. We evaluate the efficacy of our algorithm on both Standard Dynamic Range (SDR) and High Dynamic Range (HDR) datasets like KoNViD-1K, LIVE VQC, HDR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视频动作识别特征的快速高效无参考视频质量评估算法
本工作解决了高效无参考视频质量评估(NR-VQA)的问题。这项工作的动机是,即使是最好和最快的VQA算法也无法实现实时性能。质量评价的速度主要受时空特征提取阶段的影响。这种障碍在传统和深度学习模型中都很常见。为了解决这个问题,我们探讨了在NR- VQA的动作识别问题中使用的特征的有效性。具体来说,我们利用门移模块(GSM)在提取时空特征方面提供的效率。通过增加自关注模块,对GSM模型进行了简单而有效的改进。我们首先证明GSM特性确实对NR-VQA有效。然后我们演示了一种比当前最先进的VQA算法快几个数量级的加速,尽管是以整体性能为代价的。我们评估了算法在标准动态范围(SDR)和高动态范围(HDR)数据集(如KoNViD-1K, LIVE VQC, HDR)上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoRAL: Coordinated Resource Allocation for Intercell D2D Communication in Cellular Networks Modelling the Impact of Multiple Pro-inflammatory Cytokines Using Molecular Communication STPGANsFusion: Structure and Texture Preserving Generative Adversarial Networks for Multi-modal Medical Image Fusion Intelligent On/Off Switching of mmRSUs in Urban Vehicular Networks: A Deep Q-Learning Approach Classification of Auscultation Sounds into Objective Spirometry Findings using MVMD and 3D CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1