Labelling OCR Ground Truth for Usage in Repositories

Matthias Boenig, Konstantin Baierer, Volker Hartmann, M. Federbusch, Clemens Neudecker
{"title":"Labelling OCR Ground Truth for Usage in Repositories","authors":"Matthias Boenig, Konstantin Baierer, Volker Hartmann, M. Federbusch, Clemens Neudecker","doi":"10.1145/3322905.3322916","DOIUrl":null,"url":null,"abstract":"The rapid developments in deep/machine learning algorithms have over the last decade largely replaced traditional pattern/language-based approaches to OCR. Training these new tools requires scanned images alongside their transcriptions (Ground Truth, GT). To OCR historical documents with high accuracy, a wide variety and variability of GT is required to create highly specific models for specific document corpora. In this paper we present an XML-based format to exhaustively describe the features of GT for OCR relevant to training, storage and retrieval (GT metadata, GTM), as well as the tools for creating GT. We discuss the OCRD-ZIP format for bundling digitized books, including METS, images, transcription, GT metadata and more. We'll show how these data formats are used in different repository solutions within the OCR-D framework.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The rapid developments in deep/machine learning algorithms have over the last decade largely replaced traditional pattern/language-based approaches to OCR. Training these new tools requires scanned images alongside their transcriptions (Ground Truth, GT). To OCR historical documents with high accuracy, a wide variety and variability of GT is required to create highly specific models for specific document corpora. In this paper we present an XML-based format to exhaustively describe the features of GT for OCR relevant to training, storage and retrieval (GT metadata, GTM), as well as the tools for creating GT. We discuss the OCRD-ZIP format for bundling digitized books, including METS, images, transcription, GT metadata and more. We'll show how these data formats are used in different repository solutions within the OCR-D framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标记OCR基真值以便在存储库中使用
在过去十年中,深度/机器学习算法的快速发展在很大程度上取代了传统的基于模式/语言的OCR方法。训练这些新工具需要扫描图像以及它们的转录(Ground Truth, GT)。为了使OCR历史文档具有较高的准确性,需要广泛的种类和可变性的GT来为特定的文档语料库创建高度特定的模型。在本文中,我们提出了一种基于xml的格式,以详尽地描述与训练、存储和检索(GT元数据,GTM)相关的GT的特征,以及创建GT的工具。我们讨论了用于捆绑数字化图书的ocdr - zip格式,包括METS、图像、转录、GT元数据等。我们将展示如何在OCR-D框架内的不同存储库解决方案中使用这些数据格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Articles in a Digitized Finnish Historical Newspaper Collection 1771-1929: Early Results Using the PIVAJ Software OCR for Greek polytonic (multi accent) historical printed documents: development, optimization and quality control Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts Validating 126 million MARC records Automatic Semantic Text Tagging on Historical Lexica by Combining OCR and Typography Classification: A Case Study on Daniel Sander's Wörterbuch der Deutschen Sprache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1