The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic

Flavio Ferrarotti, Senén González, K. Schewe, José Maria Turull Torres
{"title":"The Polylog-Time Hierarchy Captured by Restricted Second-Order Logic","authors":"Flavio Ferrarotti, Senén González, K. Schewe, José Maria Turull Torres","doi":"10.1109/SYNASC.2018.00032","DOIUrl":null,"url":null,"abstract":"Let SO^plog denote the restriction of second-order logic, where second-order quantification ranges over relations of size at most poly-logarithmic in the size of the structure. In this article we investigate the problem, which Turing machine complexity class is captured by Boolean queries over ordered relational structures that can be expressed in this logic. For this we define a hierarchy of fragments Σ^plog_m (and Σ^plog_m) defined by formulae with alternating blocks of existential and universal second-order quantifiers in quantifier-prenex normal form. We first show that the existential fragment Σ^plog_1 captures npolylog, i.e. the class of Boolean queries that can be accepted by a non-deterministic Turing machine with random access to the input in time O((log n)^k) for some k ≥ 0. Using alternating Turing machines with random access input allows us to characterize also the fragments Σ^plog_m (and Σ^plog_m) as those Boolean queries with at most m alternating blocks of second-order quantifiers that are accepted by an alternating Turing machine. Consequently, SO^plog captures the whole poly-logarithmic time hierarchy. We demonstrate the relevance of this logic and complexity class by several problems in database theory.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let SO^plog denote the restriction of second-order logic, where second-order quantification ranges over relations of size at most poly-logarithmic in the size of the structure. In this article we investigate the problem, which Turing machine complexity class is captured by Boolean queries over ordered relational structures that can be expressed in this logic. For this we define a hierarchy of fragments Σ^plog_m (and Σ^plog_m) defined by formulae with alternating blocks of existential and universal second-order quantifiers in quantifier-prenex normal form. We first show that the existential fragment Σ^plog_1 captures npolylog, i.e. the class of Boolean queries that can be accepted by a non-deterministic Turing machine with random access to the input in time O((log n)^k) for some k ≥ 0. Using alternating Turing machines with random access input allows us to characterize also the fragments Σ^plog_m (and Σ^plog_m) as those Boolean queries with at most m alternating blocks of second-order quantifiers that are accepted by an alternating Turing machine. Consequently, SO^plog captures the whole poly-logarithmic time hierarchy. We demonstrate the relevance of this logic and complexity class by several problems in database theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受限二阶逻辑捕获的多对数时间层次结构
设SO^plog表示二阶逻辑的限制,其中二阶量化范围最多为结构大小的多对数关系。在本文中,我们研究了图灵机复杂性类的问题,该问题是通过对可以用该逻辑表示的有序关系结构的布尔查询捕获的。为此,我们定义了一个片段层次结构Σ^plog_m(和Σ^plog_m),这些片段由量词前缀范式中存在和全称二阶量词的交替块组成。我们首先证明了存在片段Σ^plog_1捕获了npolylog,即在k≥0的情况下,非确定性图灵机可以接受在时间O((log n)^k)随机访问输入的布尔查询类。使用具有随机访问输入的交替图灵机,我们还可以将片段Σ^plog_m(和Σ^plog_m)描述为那些布尔查询,其中最多有m个交替的二阶量词块,可被交替图灵机接受。因此,SO^plog捕获了整个多对数时间层次结构。我们通过数据库理论中的几个问题来证明这种逻辑和复杂性类的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1