A parametric direction finding technique

D. Linebarger, D. Johnson
{"title":"A parametric direction finding technique","authors":"D. Linebarger, D. Johnson","doi":"10.1109/ICASSP.1987.1169320","DOIUrl":null,"url":null,"abstract":"The fundamental signal model for narrowband direction finding - the propagation of several sinusoidal planar wavefronts in a medium containing an array of sensors with additive Gaussian noise present - is assumed implicitly in most high resolution beamforming algorithms. The \"natural\" parameters for this problem - angles of arrival, signal strengths, inter-signal coherences, and noise strength - specify entirely the statistic used by many algorithms, the spatial correlation matrixR. Combining the relevant parameters for a given situation in a parameter vector p, an estimate of the true parameter vector can be obtained as the solution of an optimization problem:\\min{\\hat{p}}\\max{\\min}\\parallel\\hat{R} - R(\\hat{p})\\parallelwhere\\hat{R}is an estimate ofR. The minimizing\\hat{p}yields direct estimates of the relevant parameters rather than extracting them from an intermediate quantity such as a beampattern. This parametric method is an unbiased estimator which is capable of resolving closely spaced, completely coherent sources at low signal to noise ratios and low time-bandwidth product.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The fundamental signal model for narrowband direction finding - the propagation of several sinusoidal planar wavefronts in a medium containing an array of sensors with additive Gaussian noise present - is assumed implicitly in most high resolution beamforming algorithms. The "natural" parameters for this problem - angles of arrival, signal strengths, inter-signal coherences, and noise strength - specify entirely the statistic used by many algorithms, the spatial correlation matrixR. Combining the relevant parameters for a given situation in a parameter vector p, an estimate of the true parameter vector can be obtained as the solution of an optimization problem:\min{\hat{p}}\max{\min}\parallel\hat{R} - R(\hat{p})\parallelwhere\hat{R}is an estimate ofR. The minimizing\hat{p}yields direct estimates of the relevant parameters rather than extracting them from an intermediate quantity such as a beampattern. This parametric method is an unbiased estimator which is capable of resolving closely spaced, completely coherent sources at low signal to noise ratios and low time-bandwidth product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数测向技术
在大多数高分辨率波束形成算法中,窄带测向的基本信号模型-几个正弦波面在含有加性高斯噪声的传感器阵列的介质中传播-被隐式地假设。这个问题的“自然”参数——到达角度、信号强度、信号间相干性和噪声强度——完全指定了许多算法所使用的统计量,即空间相关矩阵r。结合参数向量p中给定情况下的相关参数,可以得到对真实参数向量的估计,作为优化问题的解:\min{\hat{p}}\max{\min}\parallel\hat{R} - R(\hat{p}) \parallelwhere\hat{R}是对R的估计。最小化\hat{p}产生对相关参数的直接估计,而不是从中间量(如波束方向)中提取它们。该方法是一种无偏估计方法,能够在低信噪比和低时间带宽积条件下分辨出紧密间隔的完全相干源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1