Forecasting Inflation with Online Prices

Diego Aparicio, M. I. Bertolotto
{"title":"Forecasting Inflation with Online Prices","authors":"Diego Aparicio, M. I. Bertolotto","doi":"10.2139/ssrn.2740600","DOIUrl":null,"url":null,"abstract":"Online prices are becoming an increasingly popular micro data source in the economic literature. In this paper we introduce goods’ prices collected online through web scraping retailer’s websites as a new input to forecast the CPI inflation. We perform monthly and quarterly out-of-sample inflation forecasts in multiple countries, including the US and the UK, and find that models using online prices outperform models with offline data, from traditional benchmarks to pooled forecasts. The online anticipation presents an attractive feature to both policymakers and practitioners, in particular given the non-negligible delay in the official CPI release. Finally, we discuss reasons why the anticipation in online prices can take place.","PeriodicalId":370988,"journal":{"name":"eBusiness & eCommerce eJournal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eBusiness & eCommerce eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2740600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Online prices are becoming an increasingly popular micro data source in the economic literature. In this paper we introduce goods’ prices collected online through web scraping retailer’s websites as a new input to forecast the CPI inflation. We perform monthly and quarterly out-of-sample inflation forecasts in multiple countries, including the US and the UK, and find that models using online prices outperform models with offline data, from traditional benchmarks to pooled forecasts. The online anticipation presents an attractive feature to both policymakers and practitioners, in particular given the non-negligible delay in the official CPI release. Finally, we discuss reasons why the anticipation in online prices can take place.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用在线价格预测通货膨胀
网上价格正在成为经济文献中越来越受欢迎的微观数据源。本文引入通过网络抓取零售商网站收集的商品价格作为预测CPI通胀的新输入。我们在包括美国和英国在内的多个国家进行了月度和季度样本外通胀预测,发现使用在线价格的模型优于使用离线数据(从传统基准到汇总预测)的模型。在线预期对政策制定者和从业者都有吸引力,特别是考虑到官方CPI发布的不可忽略的延迟。最后,我们讨论了在线价格预期发生的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advertising as Information for Ranking E-Commerce Search Listings Adaptive Price Mechanism and a Sequential Reverse Auction Model in Social Commerce Asymmetric Network Effects in the Integration of Digital Platforms Is COVID-19 Reshaping Consumer Buying Behavior? Understanding the Problems and Issues of Online Purchase in Nepal The Pricing Strategies of Online Grocery Retailers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1