Empirical Mode Decomposition (EMD) for Platform Motion Compensation in Remote Life Sensing Radar

S. M. Islam, Lupua Oba, V. Lubecke
{"title":"Empirical Mode Decomposition (EMD) for Platform Motion Compensation in Remote Life Sensing Radar","authors":"S. M. Islam, Lupua Oba, V. Lubecke","doi":"10.1109/RWS53089.2022.9719920","DOIUrl":null,"url":null,"abstract":"Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%.","PeriodicalId":113074,"journal":{"name":"2022 IEEE Radio and Wireless Symposium (RWS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS53089.2022.9719920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于经验模态分解的遥感雷达平台运动补偿
无人机的呼吸运动雷达传感技术为遥感生命提供了广阔的应用前景,特别是在灾后搜救应用中。该技术面临的一个主要挑战是来自移动无人机平台的运动伪影的管理。先前的研究主要集中在使用自适应滤波方法,该方法需要安装二次雷达模块来捕获平台运动作为噪声参考。本文研究了经验模态分解(EMD)技术仅使用一次雷达测量来补偿平台运动伪影的潜力。实验结果表明,所提出的EMD方法仅使用一台雷达就能从呼吸和平台运动的组合中提取出呼吸运动的基频,精度在87%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Co-located and Distributed MIMO for Indoor Wireless Communication A Novel Miniaturized 100:1 Broadband Balun with a 4:1 Impedance Ratio A Full Ka-Band Compact Coax-to-Waveguide Transition With Shaped Internal Profile and Enhanced Fabrication Process Flexibility Fourier-Domain DAC-based Hybrid Transmitter for Wireless Communication in 28 GHz 5G bands Separation of Multiple Closely Spaced Sources Using Frequency Sweep Single-Channel Continuous Wave Doppler Radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1