Structure from Motion with Known Camera Positions

R. Carceroni, Ankita Kumar, Kostas Daniilidis
{"title":"Structure from Motion with Known Camera Positions","authors":"R. Carceroni, Ankita Kumar, Kostas Daniilidis","doi":"10.1109/CVPR.2006.296","DOIUrl":null,"url":null,"abstract":"The wide availability of GPS sensors is changing the landscape in the applications of structure from motion techniques for localization. In this paper, we study the problem of estimating camera orientations from multiple views, given the positions of the viewpoints in a world coordinate system and a set of point correspondences across the views. Given three or more views, the above problem has a finite number of solutions for three or more point correspondences. Given six or more views, the problem has a finite number of solutions for just two or more points. In the three-view case, we show the necessary and sufficient conditions for the three essential matrices to be consistent with a set of known baselines. We also introduce a method to recover the absolute orientations of three views in world coordinates from their essential matrices. To refine these estimates we perform a least-squares minimization on the group cross product SO(3) × SO(3) × SO(3). We report experiments on synthetic data and on data from the ICCV2005 Computer Vision Contest.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The wide availability of GPS sensors is changing the landscape in the applications of structure from motion techniques for localization. In this paper, we study the problem of estimating camera orientations from multiple views, given the positions of the viewpoints in a world coordinate system and a set of point correspondences across the views. Given three or more views, the above problem has a finite number of solutions for three or more point correspondences. Given six or more views, the problem has a finite number of solutions for just two or more points. In the three-view case, we show the necessary and sufficient conditions for the three essential matrices to be consistent with a set of known baselines. We also introduce a method to recover the absolute orientations of three views in world coordinates from their essential matrices. To refine these estimates we perform a least-squares minimization on the group cross product SO(3) × SO(3) × SO(3). We report experiments on synthetic data and on data from the ICCV2005 Computer Vision Contest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构从运动与已知的相机位置
GPS传感器的广泛应用正在改变结构从运动技术到定位的应用格局。本文研究了在给定视点在世界坐标系中的位置和视点间的一组对应点的情况下,从多个视点估计相机方向的问题。给定三个或更多视图,上述问题对于三个或更多点对应具有有限个数的解。给定六个或更多的视图,该问题只有两个或更多点的有限数量的解决方案。在三视图的情况下,我们展示了三个基本矩阵与一组已知基线一致的必要和充分条件。我们还介绍了一种从世界坐标的三个视图的基本矩阵中恢复其绝对方向的方法。为了改进这些估计,我们对群外积SO(3) × SO(3) × SO(3)执行最小二乘最小化。我们报告了合成数据和ICCV2005计算机视觉竞赛数据的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1