Recognition Of Silently Spoken Word From Eeg Signals Using Dense Attention Network (DAN)

Sahil Datta, A. Aondoakaa, Jorunn Jo Holmberg, E. Antonova
{"title":"Recognition Of Silently Spoken Word From Eeg Signals Using Dense Attention Network (DAN)","authors":"Sahil Datta, A. Aondoakaa, Jorunn Jo Holmberg, E. Antonova","doi":"10.1109/icassp43922.2022.9746241","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for recognizing silently spoken words from electroencephalogram (EEG) signals using a Dense Attention Network (DAN). The proposed network learns features from the EEG data by applying the self-attention mechanism on temporal, spectral, and spatial (electrodes) dimensions. We examined the effectiveness of the proposed network in extracting spatio-spectro-temporal in-formation from EEG signals and provide a network for recognition of silently spoken words. The DAN achieved a recognition rate of 80.7% in leave-trials-out (LTO) and 75.1% in leave-subject-out (LSO) cross validation methods. In a direct comparison with other methods, the DAN outperformed other existing techniques in recognition of silently spoken words.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method for recognizing silently spoken words from electroencephalogram (EEG) signals using a Dense Attention Network (DAN). The proposed network learns features from the EEG data by applying the self-attention mechanism on temporal, spectral, and spatial (electrodes) dimensions. We examined the effectiveness of the proposed network in extracting spatio-spectro-temporal in-formation from EEG signals and provide a network for recognition of silently spoken words. The DAN achieved a recognition rate of 80.7% in leave-trials-out (LTO) and 75.1% in leave-subject-out (LSO) cross validation methods. In a direct comparison with other methods, the DAN outperformed other existing techniques in recognition of silently spoken words.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于密集注意网络(DAN)的脑电信号无声语音识别
在本文中,我们提出了一种使用密集注意网络(DAN)从脑电图(EEG)信号中识别无声口语的方法。该网络通过在时间、频谱和空间(电极)维度上应用自注意机制从EEG数据中学习特征。我们检验了该网络在提取脑电图信号的时空信息方面的有效性,并提供了一个用于无声口语识别的网络。在离开试验(LTO)和离开受试者(LSO)交叉验证方法中,DAN的识别率分别为80.7%和75.1%。在与其他方法的直接比较中,DAN在识别无声口语方面优于其他现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1