Use of Genetic Algorithms in Numerical Weather Prediction

Liviu Oana, Adrian F. Spataru
{"title":"Use of Genetic Algorithms in Numerical Weather Prediction","authors":"Liviu Oana, Adrian F. Spataru","doi":"10.1109/SYNASC.2016.075","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of genetic algorithms in conjunction with the WRF - Weather Research and Forecast numerical weather prediction system in order to optimize the physical parametrization configuration and to improve the forecast of two important atmospheric parameters: 2 meter temperature and relative humidity. Our research showed good results in improving the average prediction error in limited amount of iterations and this could prove helpful in building GA optimized ensemble forecasts, especially when focusing on specific atmospheric parameters. The optimization process performed well in finding optimal physical configurations for humidity prediction, but showed poor results for temperature forecast, more experiments need to be conducted in order to have a clear view over the utility of using GA techniques for physical parametrization optimization.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper investigates the use of genetic algorithms in conjunction with the WRF - Weather Research and Forecast numerical weather prediction system in order to optimize the physical parametrization configuration and to improve the forecast of two important atmospheric parameters: 2 meter temperature and relative humidity. Our research showed good results in improving the average prediction error in limited amount of iterations and this could prove helpful in building GA optimized ensemble forecasts, especially when focusing on specific atmospheric parameters. The optimization process performed well in finding optimal physical configurations for humidity prediction, but showed poor results for temperature forecast, more experiments need to be conducted in order to have a clear view over the utility of using GA techniques for physical parametrization optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传算法在数值天气预报中的应用
本文研究了遗传算法与WRF - Weather Research and Forecast数值天气预报系统的结合,以优化物理参数化配置并改进对2米温度和相对湿度两个重要大气参数的预报。我们的研究表明,在有限的迭代次数下,平均预测误差得到了很好的改善,这对构建遗传算法优化的集合预测有帮助,特别是当关注特定的大气参数时。优化过程在寻找湿度预测的最佳物理配置方面表现良好,但在温度预测方面表现不佳,需要进行更多的实验以清楚地了解使用遗传算法进行物理参数优化的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1