Scenario Approach for Parametric Markov Models

Ying Liu, Andrea Turrini, E. M. Hahn, Bai Xue, Lijun Zhang
{"title":"Scenario Approach for Parametric Markov Models","authors":"Ying Liu, Andrea Turrini, E. M. Hahn, Bai Xue, Lijun Zhang","doi":"10.48550/arXiv.2304.08330","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approximating framework for analyzing parametric Markov models. Instead of computing complex rational functions encoding the reachability probability and the reward values of the parametric model, we exploit the scenario approach to synthesize a relatively simple polynomial approximation. The approximation is probably approximately correct (PAC), meaning that with high confidence, the approximating function is close to the actual function with an allowable error. With the PAC approximations, one can check properties of the parametric Markov models. We show that the scenario approach can also be used to check PRCTL properties directly, without synthesizing the polynomial at first hand. We have implemented our algorithm in a prototype tool and conducted thorough experiments. The experimental results demonstrate that our tool is able to compute polynomials for more benchmarks than state of the art tools such as PRISM and Storm, confirming the efficacy of our PAC-based synthesis.","PeriodicalId":335085,"journal":{"name":"Automated Technology for Verification and Analysis","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Technology for Verification and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.08330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an approximating framework for analyzing parametric Markov models. Instead of computing complex rational functions encoding the reachability probability and the reward values of the parametric model, we exploit the scenario approach to synthesize a relatively simple polynomial approximation. The approximation is probably approximately correct (PAC), meaning that with high confidence, the approximating function is close to the actual function with an allowable error. With the PAC approximations, one can check properties of the parametric Markov models. We show that the scenario approach can also be used to check PRCTL properties directly, without synthesizing the polynomial at first hand. We have implemented our algorithm in a prototype tool and conducted thorough experiments. The experimental results demonstrate that our tool is able to compute polynomials for more benchmarks than state of the art tools such as PRISM and Storm, confirming the efficacy of our PAC-based synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数马尔可夫模型的场景方法
本文提出了一种分析参数马尔可夫模型的近似框架。我们不再计算复杂的有理函数来编码参数模型的可达概率和奖励值,而是利用场景方法来合成一个相对简单的多项式近似。近似可能近似正确(PAC),这意味着在高置信度下,近似函数与允许误差的实际函数接近。使用PAC近似,可以检查参数马尔可夫模型的性质。我们表明,场景方法也可以直接用于检查PRCTL属性,而无需第一手合成多项式。我们已经在一个原型工具中实现了我们的算法,并进行了彻底的实验。实验结果表明,与PRISM和Storm等最先进的工具相比,我们的工具能够为更多的基准计算多项式,证实了我们基于pac的合成的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Equivalence Checking of Quantum Circuits of Clifford Gates An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks Synthesis of Distributed Protocols by Enumeration Modulo Isomorphisms Minimally Comparing Relational Abstract Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1