Remarks on Direct Controller using a Commutative Quaternion Neural Network

Kazuhiko Takahashi, Sung Tae Hwang, Kuya Hayashi, Masafumi Yoshida, M. Hashimoto
{"title":"Remarks on Direct Controller using a Commutative Quaternion Neural Network","authors":"Kazuhiko Takahashi, Sung Tae Hwang, Kuya Hayashi, Masafumi Yoshida, M. Hashimoto","doi":"10.1109/IRC55401.2022.00071","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the capability of a high-dimensional neural network (NN) using commutative quaternion numbers in control system applications. A multilayer commutative quaternion NN was employed to develop a servo-level controller, where the network input comprised the reference output and tapped-delay inputs/outputs of the object plant, and the network output was used directly as the control input. The commutative quaternion NN in the controller was trained in an offline manner using the stochastic gradient descent method to obtain the inverse transfer function of the plant. The effectiveness of the proposed controller was evaluated in computational experiments to control a discrete-time nonlinear plant. The simulation results demonstrate the feasibility of the commutative quaternion NN for this task and the characteristics of the proposed controller.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the capability of a high-dimensional neural network (NN) using commutative quaternion numbers in control system applications. A multilayer commutative quaternion NN was employed to develop a servo-level controller, where the network input comprised the reference output and tapped-delay inputs/outputs of the object plant, and the network output was used directly as the control input. The commutative quaternion NN in the controller was trained in an offline manner using the stochastic gradient descent method to obtain the inverse transfer function of the plant. The effectiveness of the proposed controller was evaluated in computational experiments to control a discrete-time nonlinear plant. The simulation results demonstrate the feasibility of the commutative quaternion NN for this task and the characteristics of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可交换四元数神经网络的直接控制器
在本研究中,我们研究了使用交换四元数的高维神经网络(NN)在控制系统应用中的能力。采用多层交换四元数神经网络设计伺服级控制器,其中网络输入由目标对象的参考输出和抽头延迟输入/输出组成,网络输出直接作为控制输入。采用随机梯度下降法对控制器中的交换四元数神经网络进行离线训练,得到被控对象的逆传递函数。通过计算实验验证了所提控制器控制离散非线性对象的有效性。仿真结果验证了交换四元数神经网络用于该任务的可行性以及所提控制器的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis Generating Robot-Dependent Cost Maps for Off-Road Environments Using Locomotion Experiments and Earth Observation Data* Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles Experimental Assessment of Feature-based Lidar Odometry and Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1