Using genetic algorithms for test case generation in path testing

Jin-Cherng Lin, Pu-Lin Yeh
{"title":"Using genetic algorithms for test case generation in path testing","authors":"Jin-Cherng Lin, Pu-Lin Yeh","doi":"10.1109/ATS.2000.893632","DOIUrl":null,"url":null,"abstract":"Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.","PeriodicalId":403864,"journal":{"name":"Proceedings of the Ninth Asian Test Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2000.893632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用遗传算法生成路径测试用例
通用算法的灵感来自达尔文的适者生存理论。本文讨论了一种可以自动生成测试用例来测试选定路径的遗传算法。该算法以选定的路径为目标,迭代地执行操作符序列,以使测试用例进化。演进的测试用例可以引导程序执行实现目标路径。定义了一个名为SIMILARITY的适应度函数,以确定如果没有找到最终的测试用例,哪个测试用例应该存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution-graph based approach and extended tree growing technique in power-constrained block-test scheduling Is IDDQ testing not applicable for deep submicron VLSI in year 2011? Efficient built-in self-test algorithm for memory A methodology for fault model development for hierarchical linear systems TOF: a tool for test pattern generation optimization of an FPGA application oriented test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1