Photovoltaic Solar Array Mapping using Supervised Fully Convolutional Neural Networks

T. Mujtaba, M. ArifWani
{"title":"Photovoltaic Solar Array Mapping using Supervised Fully Convolutional Neural Networks","authors":"T. Mujtaba, M. ArifWani","doi":"10.1109/INDIACom51348.2021.00019","DOIUrl":null,"url":null,"abstract":"This study explores a supervised deep learning fully convolutional segmentation model for photovoltaic solar array mapping from aerial imagery. The deep learning imaging techniques present a fast and an inexpensive way for detecting distributed photovoltaic arrays installed on ground and building rooftops. The identification of correct photovoltaic array shapes and sizes is a necessary requirement for the estimation of energy from photovoltaic arrays within an area or city. This study proposes a modified and efficient UNet deep learning segmentation model by using depthwise-separable convolution for automated photovoltaic array detection from orthorectified RGB imagery with a resolution of less or equal to 0.3m. The result shows our model has better segmentation accuracy than various state of the art models and other previous studies on solar panel detection and is efficient in terms of parameters and complexity.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study explores a supervised deep learning fully convolutional segmentation model for photovoltaic solar array mapping from aerial imagery. The deep learning imaging techniques present a fast and an inexpensive way for detecting distributed photovoltaic arrays installed on ground and building rooftops. The identification of correct photovoltaic array shapes and sizes is a necessary requirement for the estimation of energy from photovoltaic arrays within an area or city. This study proposes a modified and efficient UNet deep learning segmentation model by using depthwise-separable convolution for automated photovoltaic array detection from orthorectified RGB imagery with a resolution of less or equal to 0.3m. The result shows our model has better segmentation accuracy than various state of the art models and other previous studies on solar panel detection and is efficient in terms of parameters and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督全卷积神经网络的光伏太阳能阵列映射
本研究探索了一种监督深度学习的全卷积分割模型,用于从航空图像中绘制光伏太阳能电池阵列。深度学习成像技术为检测安装在地面和建筑屋顶上的分布式光伏阵列提供了一种快速而廉价的方法。识别正确的光伏阵列形状和尺寸是估算一个地区或城市内光伏阵列能量的必要要求。本文提出了一种基于深度可分卷积的改进的UNet深度学习分割模型,用于分辨率小于等于0.3m的正校正RGB图像的光伏阵列自动检测。结果表明,该模型的分割精度优于现有的各种模型和其他太阳能电池板检测研究,并且在参数和复杂度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Scheduling of Parking Lot Operator in Energy and Regulation Markets amalgamating PBDR Social Synchrony: An Analytical Contemplation of Contemporary State of Art Frameworks The AI enabled Chatbot Framework for Intelligent Citizen-Government Interaction for Delivery of Services Biometric System - Challenges and Future Trends Solving SIS Epidemic Disease Model by Flower Pollination Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1