A 1.8GΩ-Input-Impedance 0.15µV-Input-Referred-Ripple Chopper Amplifier with Local Positive Feedback and SAR-Assisted Ripple Reduction

Tianxiang Qu, Qinjing Pan, Xiaoyang Zeng, Zhiliang Hong, Jiawei Xu
{"title":"A 1.8GΩ-Input-Impedance 0.15µV-Input-Referred-Ripple Chopper Amplifier with Local Positive Feedback and SAR-Assisted Ripple Reduction","authors":"Tianxiang Qu, Qinjing Pan, Xiaoyang Zeng, Zhiliang Hong, Jiawei Xu","doi":"10.1109/CICC53496.2022.9772860","DOIUrl":null,"url":null,"abstract":"Many sensors exhibit output impedances greater than a few MΩ, and the subsequent instrumentation amplifier (IA) must be carefully designed to meet the requirements of high input impedance $(\\mathrm{R}_{\\text{in}})$, low noise and low offset. Chopping is a power-efficient technique to achieve low offset and low 1/f noise without noise aliasing [1]–[4], but at the expense of a lower $\\mathrm{R}_{\\text{in}}$ (10–100MΩ [1] [4] [5]). Positive feedback loop (PFL) can boost $\\mathrm{R}_{\\text{in}}$ of a capacitively-coupled chopper IA (CCIA) by providing a large portion of input source current [4]. However, in practice, the PFL is not suitable for a generic chopper amplifier to achieve a high $\\mathrm{R}_{\\text{in}}$ above $100\\text{MO}$, because the actual impedance boosting factor highly depends on the absolute accuracy of the feedback elements and the overall gain of the IA. For instance, to compensate input parasitic capacitance of 100fF by the PFL, an IA with a voltage gain of 100 requires a very small feedback capacitor of 1fF. Meanwhile, this feedback capacitor must be reconfigured with different IA gains. For the same reason, the PFL is not applicable to a chopper operational amplifier (OPA) either due to its ill-defined open-loop gain. Apart from the limited $\\mathrm{R}_{\\text{in}}$, chopper amplifiers also suffer from output ripple, i.e. the up-modulated offset. Prior art ripple reduction loop (RRL) can realize a sub-µV residual input referred ripple [1] [3], but this often involves an active loop integrator with large DC gain and time constant, resulting in power and area overhead.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many sensors exhibit output impedances greater than a few MΩ, and the subsequent instrumentation amplifier (IA) must be carefully designed to meet the requirements of high input impedance $(\mathrm{R}_{\text{in}})$, low noise and low offset. Chopping is a power-efficient technique to achieve low offset and low 1/f noise without noise aliasing [1]–[4], but at the expense of a lower $\mathrm{R}_{\text{in}}$ (10–100MΩ [1] [4] [5]). Positive feedback loop (PFL) can boost $\mathrm{R}_{\text{in}}$ of a capacitively-coupled chopper IA (CCIA) by providing a large portion of input source current [4]. However, in practice, the PFL is not suitable for a generic chopper amplifier to achieve a high $\mathrm{R}_{\text{in}}$ above $100\text{MO}$, because the actual impedance boosting factor highly depends on the absolute accuracy of the feedback elements and the overall gain of the IA. For instance, to compensate input parasitic capacitance of 100fF by the PFL, an IA with a voltage gain of 100 requires a very small feedback capacitor of 1fF. Meanwhile, this feedback capacitor must be reconfigured with different IA gains. For the same reason, the PFL is not applicable to a chopper operational amplifier (OPA) either due to its ill-defined open-loop gain. Apart from the limited $\mathrm{R}_{\text{in}}$, chopper amplifiers also suffer from output ripple, i.e. the up-modulated offset. Prior art ripple reduction loop (RRL) can realize a sub-µV residual input referred ripple [1] [3], but this often involves an active loop integrator with large DC gain and time constant, resulting in power and area overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种1.8GΩ-Input-Impedance 0.15µv输入参考纹波斩波放大器,具有局部正反馈和sar辅助纹波抑制
许多传感器的输出阻抗大于几个MΩ,后续的仪表放大器(IA)必须精心设计,以满足高输入阻抗$(\ mathm {R}_{\text{in}})$、低噪声和低偏移的要求。斩波是一种低功耗技术,可以实现低偏移和低1/f噪声,而没有噪声混叠[1]-[4],但代价是较低的$\ mathm {R}_{\text{in}}$ (10-100MΩ[1][4][5])。正反馈环(PFL)可以通过提供大部分输入源电流来提高电容耦合斩波器IA (CCIA)的$\ mathm {R}_{\text{in}}$[4]。然而,在实践中,PFL不适合用于通用斩波放大器,以实现高于$100\text{MO}$的高数学{R}_{\text{in}}$,因为实际的阻抗提升因子高度依赖于反馈元件的绝对精度和IA的总体增益。例如,为了补偿PFL的100fF输入寄生电容,电压增益为100的IA需要一个非常小的1fF反馈电容。同时,该反馈电容必须重新配置不同的IA增益。由于同样的原因,PFL也不适用于斩波运算放大器(OPA),因为它的开环增益定义不清。除了有限的$\ mathm {R}_{\text{in}}$之外,斩波放大器还受到输出纹波的影响,即上调制偏移。现有技术纹波减小环路(RRL)可以实现亚µV的剩余输入参考纹波[1][3],但这通常涉及具有大直流增益和时间常数的有源环路积分器,导致功率和面积开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All Rivers Flow to the Sea: A High Power Density Wireless Power Receiver with Split-Dual-Path Rectification and Hybrid-Quad-Path Step-Down Conversion A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency A 0.14nJ/b 200Mb/s Quasi-Balanced FSK Transceiver with Closed-Loop Modulation and Sideband Energy Detection A 2GHz voltage mode power scalable RF-Front-End with 2.5dB-NF and 0.5dBm-1dBCP High-Speed Digital-to-Analog Converter Design Towards High Dynamic Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1