{"title":"Process Mining on a Robotic Mechanism","authors":"Turcanu Cristina Nicoleta","doi":"10.1109/ICSTW52544.2021.00043","DOIUrl":null,"url":null,"abstract":"As the Fourth Industrial revolution is an emerging trend articulated by the rapid advances in automation technologies, the use of robots and the Industrial Internet of Things (IIoT) is meant to significantly simplify human’s life. However, if we consider industrial robots with two or more axes that could have unpredictable motions and velocities, real-time robots’ reliability is a matter that is strongly related to safety requirements. Considering operational testing in the context of IIoT, process conformance verification could be an important asset for obtaining knowledge of the failures – in particular, discovering failure occurrence patterns and establishing realtime preventive actions.This paper aims to pave a way to implementing a methodology for a robotic mechanism process conformance checking, using some certain synthetic operational traces that could be collected through IIoT technologies and communicated through computer driven industrial applications. Moreover, the paper suggests a formal verification method against the standard process model that could be provided by the robot manufacturer. Besides presenting some process conformance verification aspects using Celonis process mining tool, this study also refers to some finite state machine (FSM) and business process modelling (BPMN) representation, suggested as being suitable for robots’ formal specifications.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As the Fourth Industrial revolution is an emerging trend articulated by the rapid advances in automation technologies, the use of robots and the Industrial Internet of Things (IIoT) is meant to significantly simplify human’s life. However, if we consider industrial robots with two or more axes that could have unpredictable motions and velocities, real-time robots’ reliability is a matter that is strongly related to safety requirements. Considering operational testing in the context of IIoT, process conformance verification could be an important asset for obtaining knowledge of the failures – in particular, discovering failure occurrence patterns and establishing realtime preventive actions.This paper aims to pave a way to implementing a methodology for a robotic mechanism process conformance checking, using some certain synthetic operational traces that could be collected through IIoT technologies and communicated through computer driven industrial applications. Moreover, the paper suggests a formal verification method against the standard process model that could be provided by the robot manufacturer. Besides presenting some process conformance verification aspects using Celonis process mining tool, this study also refers to some finite state machine (FSM) and business process modelling (BPMN) representation, suggested as being suitable for robots’ formal specifications.