Pilot decontamination under imperfect power control

Jitendra Tugnait
{"title":"Pilot decontamination under imperfect power control","authors":"Jitendra Tugnait","doi":"10.1109/ACSSC.2017.8335513","DOIUrl":null,"url":null,"abstract":"In a time-division duplex (TDD) multiple antenna system the channel state information (CSI) can be estimated using reverse training. In multicell multiuser massive MIMO systems, pilot contamination degrades CSI estimation performance and adversely affects massive MIMO system performance. In this paper we consider a subspace-based semi-blind approach where we have training data as well as information bearing data from various users (both in-cell and neighboring cells) at the base station (BS). Existing subspace approaches assume that the interfering users from neighboring cells are always at distinctly lower power levels at the BS compared to the in-cell users. In this paper we do not make any such assumption. Unlike existing approaches, the BS estimates the channels of all users: in-cell and significant neighboring cell users, i.e., ones with comparable power levels at the BS. We exploit both subspace method using correlation as well as blind source separation using higher-order statistics. The proposed approach is illustrated via simulation examples.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a time-division duplex (TDD) multiple antenna system the channel state information (CSI) can be estimated using reverse training. In multicell multiuser massive MIMO systems, pilot contamination degrades CSI estimation performance and adversely affects massive MIMO system performance. In this paper we consider a subspace-based semi-blind approach where we have training data as well as information bearing data from various users (both in-cell and neighboring cells) at the base station (BS). Existing subspace approaches assume that the interfering users from neighboring cells are always at distinctly lower power levels at the BS compared to the in-cell users. In this paper we do not make any such assumption. Unlike existing approaches, the BS estimates the channels of all users: in-cell and significant neighboring cell users, i.e., ones with comparable power levels at the BS. We exploit both subspace method using correlation as well as blind source separation using higher-order statistics. The proposed approach is illustrated via simulation examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
飞行员在不完善的动力控制下进行净化
在时分双工(TDD)多天线系统中,信道状态信息(CSI)可以通过反向训练来估计。在多小区多用户大规模MIMO系统中,导频污染会降低CSI估计性能,并对大规模MIMO系统性能产生不利影响。在本文中,我们考虑了一种基于子空间的半盲方法,其中我们有来自基站(BS)的各种用户(包括小区内和邻近小区)的训练数据和信息承载数据。现有的子空间方法假设来自相邻小区的干扰用户与小区内用户相比,在BS处总是处于明显较低的功率水平。在本文中,我们不做任何这样的假设。与现有的方法不同,BS估计所有用户的信道:小区内和重要的邻近小区用户,即在BS中具有可比功率水平的用户。我们既利用相关的子空间方法,也利用高阶统计量的盲源分离。通过仿真实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
milliProxy: A TCP proxy architecture for 5G mmWave cellular systems Joint user scheduling and power optimization in full-duplex cells with successive interference cancellation Deep neural network architectures for modulation classification Towards provably invisible network flow fingerprints Seeded graph matching: Efficient algorithms and theoretical guarantees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1