Domain Adaptive Semantic Segmentation through Photorealistic Enhancement of Video Game

Kaito Nakajima, Takafumi Katayama, Tian Song, Xiantao Jiang, T. Shimamoto
{"title":"Domain Adaptive Semantic Segmentation through Photorealistic Enhancement of Video Game","authors":"Kaito Nakajima, Takafumi Katayama, Tian Song, Xiantao Jiang, T. Shimamoto","doi":"10.1109/ICCE53296.2022.9730769","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation is considered as an effective technique to reduce the large amount supervised data. In order to solve this problem, unsupervised domain adaptation is considered to be an effective technique. In this work, three types of domain adaptation: image-level domain adaptation, inter-domain adaptation, and intra-domain adaptation are introduced to achieve better semantic segmentation accuracy. The proposed method achieved an mean IoU of 45.0%. Furthermore, by combining the proposed method with intra-domain adaptation, an mean IoU improvement of 1.2% is achieved compared to previous work.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unsupervised domain adaptation is considered as an effective technique to reduce the large amount supervised data. In order to solve this problem, unsupervised domain adaptation is considered to be an effective technique. In this work, three types of domain adaptation: image-level domain adaptation, inter-domain adaptation, and intra-domain adaptation are introduced to achieve better semantic segmentation accuracy. The proposed method achieved an mean IoU of 45.0%. Furthermore, by combining the proposed method with intra-domain adaptation, an mean IoU improvement of 1.2% is achieved compared to previous work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视频游戏真实感增强的领域自适应语义分割
无监督域自适应被认为是减少大量监督数据的有效方法。为了解决这一问题,无监督域自适应被认为是一种有效的方法。本文通过引入三种类型的领域自适应:图像级领域自适应、域间自适应和域内自适应来达到更好的语义分割精度。该方法的平均欠条为45.0%。此外,通过将该方法与域内自适应相结合,与以前的工作相比,平均IoU提高了1.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YOLO-Based Deep Learning Design for In-Cabin Monitoring System with Fisheye-Lens Camera Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation Barcode Image Identification Based on Maximum a Posterior Probability Big Data Edge on Consumer Devices for Precision Medicine System of Predicting Dementia Using Transformer Based Ensemble Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1