On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Traffic Classification

Iyad Lahsen Cherif, A. Kortebi
{"title":"On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Traffic Classification","authors":"Iyad Lahsen Cherif, A. Kortebi","doi":"10.1109/WD.2019.8734193","DOIUrl":null,"url":null,"abstract":"Traffic classification (TC) is a fundamental task of network management and monitoring operations. Previous works relying on selected packet header fields (e.g. port numbers) or application layer protocol decoding techniques are becoming increasingly difficult and inefficient when facing encrypted traffic and peer-to-peer flows. In this paper, we address the problem of flow based TC using machine learning (ML) algorithms. Our work considers a supervised approach, namely eXtreme Gradient Boosting (XGBoost) algorithm, which has never been investigated for TC. Performance evaluation results show that we obtain 99.5% accuracy on a dataset containing real flows. Additionally, compared to other ML algorithms, XGBoost is the most accurate one.","PeriodicalId":432101,"journal":{"name":"2019 Wireless Days (WD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Wireless Days (WD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2019.8734193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Traffic classification (TC) is a fundamental task of network management and monitoring operations. Previous works relying on selected packet header fields (e.g. port numbers) or application layer protocol decoding techniques are becoming increasingly difficult and inefficient when facing encrypted traffic and peer-to-peer flows. In this paper, we address the problem of flow based TC using machine learning (ML) algorithms. Our work considers a supervised approach, namely eXtreme Gradient Boosting (XGBoost) algorithm, which has never been investigated for TC. Performance evaluation results show that we obtain 99.5% accuracy on a dataset containing real flows. Additionally, compared to other ML algorithms, XGBoost is the most accurate one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用极限梯度增强(XGBoost)机器学习算法进行家庭网络流量分类
流分类(TC)是网络管理和监控操作的一项基本任务。以前的工作依赖于选择的数据包报头字段(例如端口号)或应用层协议解码技术,在面对加密流量和点对点流量时变得越来越困难和低效。在本文中,我们使用机器学习(ML)算法解决了基于流的TC问题。我们的工作考虑了一种监督方法,即极限梯度增强(XGBoost)算法,该算法从未对TC进行过研究。性能评估结果表明,我们在包含真实流的数据集上获得了99.5%的准确率。此外,与其他ML算法相比,XGBoost是最准确的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Optimized Task Offloading Decision Making in Mobile Edge Computing Enhancing User Fairness in OFDMA Radio Access Networks Through Machine Learning In-network Predictive Analytics in Edge Computing New Multi-Carrier Candidate Waveform For the 5G Physical Layer of Wireless Mobile Networks Credit-Based Relay Selection Algorithm Using Stackelberg Game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1