A multi-level backpropagation network for pattern recognition systems

C.Y. Chen, C. Hwang
{"title":"A multi-level backpropagation network for pattern recognition systems","authors":"C.Y. Chen, C. Hwang","doi":"10.1109/ICNN.1994.374724","DOIUrl":null,"url":null,"abstract":"The backpropagation network (BPN) is now widely used in the field of pattern recognition because this artificial neural network can classify complex patterns and perform nontrivial mapping functions. In this paper, we propose a multi-level backpropagation network (MLBPN) model as a classifier for practical pattern recognition systems. The described model reserves the benefits of the BPN and derives the extra benefits of this MLBPN with two fold: (1) the MLBPN can reduce the complexity of BPN, and (2) a speed-up of the recognition process is attained. The experimental results verify these characteristics and show that the MLBPN model is a practical classifier for pattern recognition systems.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The backpropagation network (BPN) is now widely used in the field of pattern recognition because this artificial neural network can classify complex patterns and perform nontrivial mapping functions. In this paper, we propose a multi-level backpropagation network (MLBPN) model as a classifier for practical pattern recognition systems. The described model reserves the benefits of the BPN and derives the extra benefits of this MLBPN with two fold: (1) the MLBPN can reduce the complexity of BPN, and (2) a speed-up of the recognition process is attained. The experimental results verify these characteristics and show that the MLBPN model is a practical classifier for pattern recognition systems.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式识别系统的多层次反向传播网络
反向传播网络(BPN)由于能够对复杂的模式进行分类和执行非平凡的映射函数,在模式识别领域得到了广泛的应用。在本文中,我们提出了一个多层次反向传播网络(MLBPN)模型作为实际模式识别系统的分类器。所描述的模型保留了BPN的优点,并从两个方面获得了该MLBPN的额外优点:(1)MLBPN可以降低BPN的复杂性;(2)实现了识别过程的加速。实验结果验证了这些特征,表明MLBPN模型是一种实用的模式识别分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1