Design and experimental research of video detection system for ship fire

J. Feng, Yang Feng, Luo Ningzhao, Wu Benxiang
{"title":"Design and experimental research of video detection system for ship fire","authors":"J. Feng, Yang Feng, Luo Ningzhao, Wu Benxiang","doi":"10.1109/IICSPI48186.2019.9095929","DOIUrl":null,"url":null,"abstract":"In order to make up for the shortcomings of traditional fire detectors and improve the reliability of fire alarm, based on the Raspberry Pi hardware conditions and the Keras deep learning framework, this paper uses the lightweight direct regression detection algorithm YOLO v3tiny to implement a small local video identification system for ship fire. Based on video test and fire simulation, the RpiFire system has achieved high accuracy in high recall rate and can meet the needs of ship fire detection.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In order to make up for the shortcomings of traditional fire detectors and improve the reliability of fire alarm, based on the Raspberry Pi hardware conditions and the Keras deep learning framework, this paper uses the lightweight direct regression detection algorithm YOLO v3tiny to implement a small local video identification system for ship fire. Based on video test and fire simulation, the RpiFire system has achieved high accuracy in high recall rate and can meet the needs of ship fire detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
船舶火灾视频检测系统的设计与实验研究
为了弥补传统火灾探测器的不足,提高火灾报警的可靠性,本文基于树莓派硬件条件和Keras深度学习框架,采用轻量级直接回归检测算法YOLO v3tiny实现了一个小型船舶火灾局部视频识别系统。基于视频测试和火灾仿真,RpiFire系统在高召回率下取得了较高的准确率,能够满足船舶火灾探测的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis and Design of System of Experimental Consumables Based on Django and QR code Analysis and Research on the Characteristics of Boiled Yolk based on Hyperspectral Remote Sensing Images Density Peaks Spatial Clustering by Grid Neighborhood Search Modeling of Superheated Steam Temperature Characteristics Based on Fireworks Algorithm Optimized Extreme Learning Machine Fusion Chaotic Prediction Model for Bearing Performance by Computer Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1