Target Detection in Mainlobe Jamming Using Convolutional Neural Network

Yugang Wang, K. Duan, Xingjia Yang, Xiang Li
{"title":"Target Detection in Mainlobe Jamming Using Convolutional Neural Network","authors":"Yugang Wang, K. Duan, Xingjia Yang, Xiang Li","doi":"10.1145/3508297.3508334","DOIUrl":null,"url":null,"abstract":"The traditional array adaptive beamforming methods yield serious target loss in the presence of mainlobe jamming. Super-resolution methods based on sparse recovery can separate the mainlobe jamming from the target in the space domain, but it cannot reconstruct the target information when the angle between the jamming and the target is too small or the signal-to-noise ratio is too low. In order to solve above problems, we propose a novel super-resolution method based on the convolutional neural network. The proposed method can effectively separate the mainlobe jamming and the weak target even within the half-power mainlobe width, thus can achieve the target detection in the mainlobe jamming scenario. Simulation experiments verify the effectiveness of the proposed method.","PeriodicalId":285741,"journal":{"name":"2021 4th International Conference on Electronics and Electrical Engineering Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508297.3508334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional array adaptive beamforming methods yield serious target loss in the presence of mainlobe jamming. Super-resolution methods based on sparse recovery can separate the mainlobe jamming from the target in the space domain, but it cannot reconstruct the target information when the angle between the jamming and the target is too small or the signal-to-noise ratio is too low. In order to solve above problems, we propose a novel super-resolution method based on the convolutional neural network. The proposed method can effectively separate the mainlobe jamming and the weak target even within the half-power mainlobe width, thus can achieve the target detection in the mainlobe jamming scenario. Simulation experiments verify the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的主叶干扰目标检测
在存在主瓣干扰的情况下,传统的阵列自适应波束形成方法会导致严重的目标损失。基于稀疏恢复的超分辨方法可以在空间域中将主瓣干扰与目标分离,但当干扰与目标夹角过小或信噪比过低时,无法重构目标信息。为了解决上述问题,我们提出了一种基于卷积神经网络的超分辨方法。该方法即使在半功率主瓣宽度内也能有效分离主瓣干扰和弱目标,从而实现在主瓣干扰情况下的目标检测。仿真实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Realization of Anti-scratch System on Vehicle Bottom Based on 51 Single-chip Microcomputer Performance Simulation of Cosine Roll-off System Based on Eye Pattern Design and load test method of 2×250kN large-span hoist Study on the Influence of Parallel Gap on Electric Field Distribution and Live Working of 220kV Transmission Lines Android-Based Mobile Application for Managing the Laboratory Air Conditioning Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1