Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang
{"title":"Coordinated planning of source-grid-load-storage power system to promote large-scale renewable energy consumption","authors":"Bin Che, Zelong Zhang, Dongni Wei, Panlong Jin, Yan Yang","doi":"10.1109/ACFPE56003.2022.9952299","DOIUrl":null,"url":null,"abstract":"With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACFPE56003.2022.9952299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the increase of wind and solar power plants, the uncertainty of their output also brings challenges to the power system. These factors should also be considered in long-term planning of the power system. Therefore, a source-grid-load-storage power system coordinated expansion planning model that considers demand response services is proposed in this paper. In this way, the ability to absorb large-scale renewable energy such as light and wind in the power system is improved. First, the power system operation model is proposed in this paper; secondly, the demand response services and electricity storage facility are modeled in detail; then demand response and electricity storage facility resources are used to alleviate the intermittent output of wind and solar power plants on the power side. A load-side demand response service planning model is proposed, and a source-network-load coordination planning model is proposed. Finally, the rationality of the model is verified through the analysis of simulation examples, and the advantages of the coordinated planning of source-grid-load-storage power system are proved. In addition, it can effectively guarantee the safety of power system operation and improve the absorption capacity of wind and light energy.