A Statistical Study on the formation of a-few-dopant quantum dots in highly-doped Si nanowire transistors

T. Hasan, M. Tabe, D. Moraru, A. Afiff, A. Udhiarto, H. Sudibyo, D. Hartanto, A. Samanta, M. Muruganathan, H. Mizuta
{"title":"A Statistical Study on the formation of a-few-dopant quantum dots in highly-doped Si nanowire transistors","authors":"T. Hasan, M. Tabe, D. Moraru, A. Afiff, A. Udhiarto, H. Sudibyo, D. Hartanto, A. Samanta, M. Muruganathan, H. Mizuta","doi":"10.1109/QIR.2017.8168455","DOIUrl":null,"url":null,"abstract":"Single-electron tunneling (SET) transistors have been studied for the past several decades because they are promising for low-power consumption and fundamental-level control of charge. The quantum dots (QDs) that are the main part of an SET transistor have been demonstrated in a variety of materials, but recently dopant-atoms in silicon have also been shown to work as QDs. However, a single conventional dopant-atom has usually a shallow ground state energy level below the conduction band edge (∼45 meV). This means that the tunnel barrier is relatively low and thermally-activated current can flow over the barrier. Therefore, the operation of dopant-atom SET transistors remains limited to low temperatures. In this work, we statistically analyze the key factors for raising the SET operation temperature up to room temperature (>300 K).","PeriodicalId":225743,"journal":{"name":"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR.2017.8168455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Single-electron tunneling (SET) transistors have been studied for the past several decades because they are promising for low-power consumption and fundamental-level control of charge. The quantum dots (QDs) that are the main part of an SET transistor have been demonstrated in a variety of materials, but recently dopant-atoms in silicon have also been shown to work as QDs. However, a single conventional dopant-atom has usually a shallow ground state energy level below the conduction band edge (∼45 meV). This means that the tunnel barrier is relatively low and thermally-activated current can flow over the barrier. Therefore, the operation of dopant-atom SET transistors remains limited to low temperatures. In this work, we statistically analyze the key factors for raising the SET operation temperature up to room temperature (>300 K).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高掺杂硅纳米线晶体管中少量掺杂量子点形成的统计研究
单电子隧穿(SET)晶体管在过去的几十年里一直被研究,因为它们具有低功耗和基元级电荷控制的前景。量子点(QDs)作为SET晶体管的主要部分已经在各种材料中得到了证明,但最近硅中的掺杂原子也被证明可以作为QDs工作。然而,单个传统掺杂原子通常具有低于导带边缘的浅基态能级(~ 45 meV)。这意味着隧道势垒相对较低,热激活电流可以流过势垒。因此,掺杂原子SET晶体管的工作仍然局限于低温。在这项工作中,我们统计分析了将SET工作温度提高到室温(>300 K)的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of anode and cathode workfunction on the operating voltage and luminance of a single emissive layer organic light emitting diode Concept development for quantification of integrated energy security Indonesian text feature extraction using gibbs sampling and mean variational inference latent dirichlet allocation Measurement of particles in oil using shear horizontal surface acoustic wave sensor Palm vein recognition by using modified of local binary pattern (LBP) for extraction feature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1