A Survey of HMM-based Algorithms in Machinery Fault Prediction

Somayeh Bakhtiari Ramezani, Brad Killen, Logan Cummins, S. Rahimi, A. Amirlatifi, Maria Seale
{"title":"A Survey of HMM-based Algorithms in Machinery Fault Prediction","authors":"Somayeh Bakhtiari Ramezani, Brad Killen, Logan Cummins, S. Rahimi, A. Amirlatifi, Maria Seale","doi":"10.1109/SSCI50451.2021.9659838","DOIUrl":null,"url":null,"abstract":"Early detection of faulty patterns and timely scheduling of maintenance events can minimize risk to the underlying processes and increase the system's lifespan, reliability, and availability. Different techniques are used in the literature to determine the health state of the system, one of which is the Hidden Markov Models (HMMs). This class of algorithms is very well suited for modeling the health condition dictated by the latent states of the system. HMMs can reveal transitions from one state to another, thus highlighting degradation in a system's health and the right time for maintenance. While many extensions and variations of the HMM are studied for a variety of applications, the present study aims to evaluate and compare the state-of-the-art HMM-based research in predictive maintenance only. This study also aims to discuss the capabilities and limitations of such algorithms and future directions to tackle the current limitations.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Early detection of faulty patterns and timely scheduling of maintenance events can minimize risk to the underlying processes and increase the system's lifespan, reliability, and availability. Different techniques are used in the literature to determine the health state of the system, one of which is the Hidden Markov Models (HMMs). This class of algorithms is very well suited for modeling the health condition dictated by the latent states of the system. HMMs can reveal transitions from one state to another, thus highlighting degradation in a system's health and the right time for maintenance. While many extensions and variations of the HMM are studied for a variety of applications, the present study aims to evaluate and compare the state-of-the-art HMM-based research in predictive maintenance only. This study also aims to discuss the capabilities and limitations of such algorithms and future directions to tackle the current limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于hmm的机械故障预测算法综述
早期检测错误模式和及时安排维护事件可以将底层流程的风险降至最低,并增加系统的寿命、可靠性和可用性。文献中使用了不同的技术来确定系统的健康状态,其中一种是隐马尔可夫模型(hmm)。这类算法非常适合于对由系统潜在状态决定的健康状况进行建模。hmm可以显示从一种状态到另一种状态的转换,从而突出显示系统健康状况的退化和维护的正确时间。虽然HMM的许多扩展和变化被研究用于各种应用,但本研究的目的是评估和比较最先进的基于HMM的预测性维护研究。本研究还旨在讨论这些算法的能力和局限性,以及解决当前局限性的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1