Scalar operand networks: on-chip interconnect for ILP in partitioned architectures

M. Taylor, Walter Lee, Saman P. Amarasinghe, A. Agarwal
{"title":"Scalar operand networks: on-chip interconnect for ILP in partitioned architectures","authors":"M. Taylor, Walter Lee, Saman P. Amarasinghe, A. Agarwal","doi":"10.1109/HPCA.2003.1183551","DOIUrl":null,"url":null,"abstract":"The bypass paths and multiported register files in microprocessors serve as an implicit interconnect to communicate operand values among pipeline stages and multiple ALU. Previous superscalar designs implemented this interconnect using centralized structures that do not scale with increasing ILP demands. In search of scalability, recent microprocessor designs in industry and academia exhibit a trend towards distributed resources such as partitioned register files, banked caches, multiple independent compute pipelines, and even multiple program counters. Some of these partitioned microprocessor designs have begun to implement bypassing and operand transport using point-to-point interconnects rather than centralized networks. We call interconnects optimized for scalar data transport, whether centralized or distributed, scalar operand networks. Although these networks share many of the challenges of multiprocessor networks such as scalability and deadlock avoidance, they have many unique requirements, including ultra-low latencies (a few cycles versus tens of cycles) and ultra-fast operation-operand matching. This paper discusses the unique properties of scalar operand networks, examines alternative ways of implementing them, and describes in detail the implementation of one such network in the Raw microprocessor. The paper analyzes the performance of these networks for ILP workloads and the sensitivity of overall ILP performance to network properties.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

Abstract

The bypass paths and multiported register files in microprocessors serve as an implicit interconnect to communicate operand values among pipeline stages and multiple ALU. Previous superscalar designs implemented this interconnect using centralized structures that do not scale with increasing ILP demands. In search of scalability, recent microprocessor designs in industry and academia exhibit a trend towards distributed resources such as partitioned register files, banked caches, multiple independent compute pipelines, and even multiple program counters. Some of these partitioned microprocessor designs have begun to implement bypassing and operand transport using point-to-point interconnects rather than centralized networks. We call interconnects optimized for scalar data transport, whether centralized or distributed, scalar operand networks. Although these networks share many of the challenges of multiprocessor networks such as scalability and deadlock avoidance, they have many unique requirements, including ultra-low latencies (a few cycles versus tens of cycles) and ultra-fast operation-operand matching. This paper discusses the unique properties of scalar operand networks, examines alternative ways of implementing them, and describes in detail the implementation of one such network in the Raw microprocessor. The paper analyzes the performance of these networks for ILP workloads and the sensitivity of overall ILP performance to network properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标量操作数网络:分区体系结构中ILP的片上互连
微处理器中的旁路路径和多端口寄存器文件作为隐式互连,在管道级和多个ALU之间通信操作数值。以前的超标量设计使用集中式结构实现这种互连,这种结构不能随着ILP需求的增加而扩展。为了寻求可扩展性,最近工业和学术界的微处理器设计呈现出分布式资源的趋势,例如分区寄存器文件、银行缓存、多个独立的计算管道,甚至多个程序计数器。这些分区微处理器设计中的一些已经开始使用点对点互连而不是集中式网络来实现旁路和操作数传输。我们把为标量数据传输优化的互连称为标量操作数网络,无论是集中式的还是分布式的。尽管这些网络共享多处理器网络的许多挑战,例如可伸缩性和死锁避免,但它们有许多独特的要求,包括超低延迟(几个周期相对于几十个周期)和超快的操作-操作数匹配。本文讨论了标量操作数网络的独特性质,研究了实现它们的替代方法,并详细描述了在Raw微处理器中实现这样一个网络的方法。本文分析了这些网络在ILP工作负载下的性能,以及整体ILP性能对网络特性的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic voltage scaling with links for power optimization of interconnection networks Memory system behavior of Java-based middleware Mini-threads: increasing TLP on small-scale SMT processors Performance enhancement techniques for InfiniBand/sup TM/ Architecture Deterministic clock gating for microprocessor power reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1