Anomaly Detection and Visualization for Electricity Consumption Data

Nyoungwoo Lee, Jehyun Nam, Ho‐Jin Choi
{"title":"Anomaly Detection and Visualization for Electricity Consumption Data","authors":"Nyoungwoo Lee, Jehyun Nam, Ho‐Jin Choi","doi":"10.1109/ICDMW51313.2020.00108","DOIUrl":null,"url":null,"abstract":"Power supplied enterprises need to accurately detect abnormal power consumption cases to predict power demand. Since actual abnormal power consumption patterns are irregular, a flexible model should be designed to address this situation. Thus, we inspect abnormal power consumption data and predict potential abnormal patterns. Based on these insights, the goal of this work is to generate data onto the identified abnormal patterns and to design a flexible model that can detect the generated abnormal data. As a result, a performance for anomaly detection of the final model recorded 74% and 72% accuracy for original abnormal and normal data, respectively, and randomly generated abnormal data recorded 95.07% accuracy for growth type and 89.69% accuracy for reduction type. We suggest a set of ways to identify potential abnormal data and design flexible models to address them.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power supplied enterprises need to accurately detect abnormal power consumption cases to predict power demand. Since actual abnormal power consumption patterns are irregular, a flexible model should be designed to address this situation. Thus, we inspect abnormal power consumption data and predict potential abnormal patterns. Based on these insights, the goal of this work is to generate data onto the identified abnormal patterns and to design a flexible model that can detect the generated abnormal data. As a result, a performance for anomaly detection of the final model recorded 74% and 72% accuracy for original abnormal and normal data, respectively, and randomly generated abnormal data recorded 95.07% accuracy for growth type and 89.69% accuracy for reduction type. We suggest a set of ways to identify potential abnormal data and design flexible models to address them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力消耗数据的异常检测和可视化
供电企业需要准确检测异常用电情况,预测用电需求。由于实际的异常功耗模式是不规则的,因此应该设计一个灵活的模型来处理这种情况。因此,我们检查异常的功耗数据,并预测潜在的异常模式。基于这些见解,这项工作的目标是将数据生成到已识别的异常模式上,并设计一个可以检测生成的异常数据的灵活模型。结果,最终模型的异常检测性能对原始异常和正常数据的准确率分别为74%和72%,随机生成的异常数据对生长型的准确率为95.07%,对约简型的准确率为89.69%。我们提出了一组方法来识别潜在的异常数据,并设计灵活的模型来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1