{"title":"An Adaptable SVM Model for Abnormalities Detection in Chest X-ray Reports","authors":"A. Ìyàndá, Omolara Aminat Ogungbe, A. Aderibigbe","doi":"10.1109/ITED56637.2022.10051548","DOIUrl":null,"url":null,"abstract":"In Nigeria, prose format is used to present and perform analysis on chest x-ray reports and this often results in delayed response from the clinicians. Therefore, with a view to developing a system for analyzing chest x-ray reports for diagnosing cardiomegaly, linear support vector machine algorithm was utilized to formulate an adaptable model with a train-test split of 70:30 for six hundred and fifty (650) de-identified patients' information. Attributes relevant to cardiomegaly from the collected dataset were extracted using Term frequency/inverse document frequency technique. This work provides an adequate requirement for diagnosis design with accuracy of 93.69%. Its implementation in software application has the potential to reduce delay in attending to patients and can also help the clinicians focus on the findings from chest x-ray reports.","PeriodicalId":246041,"journal":{"name":"2022 5th Information Technology for Education and Development (ITED)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Information Technology for Education and Development (ITED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITED56637.2022.10051548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Nigeria, prose format is used to present and perform analysis on chest x-ray reports and this often results in delayed response from the clinicians. Therefore, with a view to developing a system for analyzing chest x-ray reports for diagnosing cardiomegaly, linear support vector machine algorithm was utilized to formulate an adaptable model with a train-test split of 70:30 for six hundred and fifty (650) de-identified patients' information. Attributes relevant to cardiomegaly from the collected dataset were extracted using Term frequency/inverse document frequency technique. This work provides an adequate requirement for diagnosis design with accuracy of 93.69%. Its implementation in software application has the potential to reduce delay in attending to patients and can also help the clinicians focus on the findings from chest x-ray reports.