Vibration of electrically actuated MEMS Timoshenko microbeams based on a hierarchical beam element

Cong Ich Le, D. Nguyen
{"title":"Vibration of electrically actuated MEMS Timoshenko microbeams based on a hierarchical beam element","authors":"Cong Ich Le, D. Nguyen","doi":"10.15625/0866-7136/17909","DOIUrl":null,"url":null,"abstract":"In this paper, vibration of Timoshenko microbeams with an axial force in micro-electromechanical systems (MEMS) is studied for the first time by using a nonlinear finite element procedure. Based on the von Kármán geometric nonlinearity and the modified couple stress theory (MCST), a beam element is formulated by employing hierarchical functions to interpolate the displacement field. Using the derived element, the discretized equation of motion for the microbeam is constructed and then solved by the Newton-Raphson iterative procedure in conjunction with the Newmark method. The natural frequencies, pull-in voltages and dynamic deflections are computed for a clamped-clamped microbeam under electrostatic actuation of a given direct current (DC) voltage. The numerical result reveals that the axial force and the microsize effect have a significant influence on the vibration, and the fundamental frequency of the microbeams is underestimated by ignoring the size effect. The effects of the axial force, the applied voltage and the material length scale parameter on the vibration of the beam are studied in detail and highlighted.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/17909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, vibration of Timoshenko microbeams with an axial force in micro-electromechanical systems (MEMS) is studied for the first time by using a nonlinear finite element procedure. Based on the von Kármán geometric nonlinearity and the modified couple stress theory (MCST), a beam element is formulated by employing hierarchical functions to interpolate the displacement field. Using the derived element, the discretized equation of motion for the microbeam is constructed and then solved by the Newton-Raphson iterative procedure in conjunction with the Newmark method. The natural frequencies, pull-in voltages and dynamic deflections are computed for a clamped-clamped microbeam under electrostatic actuation of a given direct current (DC) voltage. The numerical result reveals that the axial force and the microsize effect have a significant influence on the vibration, and the fundamental frequency of the microbeams is underestimated by ignoring the size effect. The effects of the axial force, the applied voltage and the material length scale parameter on the vibration of the beam are studied in detail and highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层梁单元的电驱动MEMS Timoshenko微梁的振动
本文首次采用非线性有限元方法研究了微机电系统(MEMS)中受轴向力作用的Timoshenko微梁的振动问题。基于von Kármán几何非线性和修正耦合应力理论(MCST),采用层次函数对位移场进行插值,建立了梁单元。利用导出的单元,构造了微梁的离散运动方程,并结合Newmark方法采用Newton-Raphson迭代法求解。在给定直流电压的静电驱动下,计算了夹紧-夹紧微梁的固有频率、拉入电压和动态挠度。数值结果表明,轴向力和微尺寸效应对振动有显著影响,忽略微梁的尺寸效应会低估微梁的基频。重点研究了轴向力、外加电压和材料长度尺度参数对梁振动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of small punch test to estimate mechanical behaviour of SUS304 austenitic stainless steel Size-dependent nonlinear bending of microbeams based on a third-order shear deformation theory Wave propagation in context of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality Application of newly proposed hardening laws for structural steel rods Proportional Topology Optimization algorithm with virtual elements for multi-material problems considering mass and cost constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1