Leveraging abstract interpretation for efficient dynamic symbolic execution

Eman Alatawi, H. Søndergaard, Tim Miller
{"title":"Leveraging abstract interpretation for efficient dynamic symbolic execution","authors":"Eman Alatawi, H. Søndergaard, Tim Miller","doi":"10.1109/ASE.2017.8115672","DOIUrl":null,"url":null,"abstract":"Dynamic Symbolic Execution (DSE) is a technique to automatically generate test inputs by executing a program with concrete and symbolic values simultaneously. A key challenge in DSE is scalability; executing all feasible program paths is not possible, owing to the potentially exponential or infinite number of paths. Loops are a main source of path explosion, in particular where the number of iterations depends on a program's input. Problems arise because DSE maintains symbolic values that capture only the dependencies on symbolic inputs. This ignores control dependencies, including loop dependencies that depend indirectly on the inputs. We propose a method to increase the coverage achieved by DSE in the presence of input-data dependent loops and loop dependent branches. We combine DSE with abstract interpretation to find indirect control dependencies, including loop and branch indirect dependencies. Preliminary results show that this results in better coverage, within considerably less time compared to standard DSE.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Dynamic Symbolic Execution (DSE) is a technique to automatically generate test inputs by executing a program with concrete and symbolic values simultaneously. A key challenge in DSE is scalability; executing all feasible program paths is not possible, owing to the potentially exponential or infinite number of paths. Loops are a main source of path explosion, in particular where the number of iterations depends on a program's input. Problems arise because DSE maintains symbolic values that capture only the dependencies on symbolic inputs. This ignores control dependencies, including loop dependencies that depend indirectly on the inputs. We propose a method to increase the coverage achieved by DSE in the presence of input-data dependent loops and loop dependent branches. We combine DSE with abstract interpretation to find indirect control dependencies, including loop and branch indirect dependencies. Preliminary results show that this results in better coverage, within considerably less time compared to standard DSE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用抽象解释实现高效的动态符号执行
动态符号执行(DSE)是一种通过同时执行具有具体值和符号值的程序来自动生成测试输入的技术。DSE的一个关键挑战是可伸缩性;执行所有可行的程序路径是不可能的,因为路径可能呈指数级或无限多。循环是路径爆炸的主要来源,特别是在迭代次数取决于程序输入的情况下。问题的出现是因为DSE维护的符号值只捕获对符号输入的依赖。这将忽略控制依赖项,包括间接依赖于输入的循环依赖项。我们提出了一种在存在输入数据依赖循环和循环依赖分支的情况下增加DSE覆盖率的方法。我们结合DSE和抽象解释来寻找间接控制依赖,包括循环和分支间接依赖。初步结果表明,与标准DSE相比,这可以在更短的时间内实现更好的覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1