{"title":"Predictive Handover Approach for Dynamic Resource Management in 5G Heterogeneous Networks using Grey Fuzzy Logical Control","authors":"Ruu-Sheng Huey, Tsung-Ming Lin, Chih-Kuo Hsu","doi":"10.1109/ICASI55125.2022.9774442","DOIUrl":null,"url":null,"abstract":"The fifth-generation communication system has new functions of low power consumption and high-speed transmission. It is a base station deployment architecture that requires high density, and usually uses heterogeneous wireless access technologies to meet users' high-speed data transmission requirements. The future development of 5G will closely integrate and mix existing 4G technologies to provide users with ubiquitous high-speed seamless communication services. However, as the number of handovers increases, a heterogeneous network will pose technical challenges for the mobility management of highly dense small cells. Because of the frequent handover probability, handover failure or handover ping-pong effect will often occur, which will cause system performance degradation. In order to solve this problem, we propose a grey fuzzy control method to predict the control parameters of handover, which can effectively reduce the number of interruptions and time delay of handover. In this article, we propose different dynamic resource management and predictive handover strategies based on the load of the target base station and the data characteristics of the network connection point. The main purpose of diversifying combinations of heterogeneous network traffic according to different resource requirements is to effectively use radio resources and improve handover efficiency, thereby improving overall system performance. The simulation results indicate that we proposed predictive handover approach for dynamic resource management approach significantly lowers the rates of handover ping-pong, radio link failure and reduces the dropping probability of handover connections.","PeriodicalId":190229,"journal":{"name":"2022 8th International Conference on Applied System Innovation (ICASI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI55125.2022.9774442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The fifth-generation communication system has new functions of low power consumption and high-speed transmission. It is a base station deployment architecture that requires high density, and usually uses heterogeneous wireless access technologies to meet users' high-speed data transmission requirements. The future development of 5G will closely integrate and mix existing 4G technologies to provide users with ubiquitous high-speed seamless communication services. However, as the number of handovers increases, a heterogeneous network will pose technical challenges for the mobility management of highly dense small cells. Because of the frequent handover probability, handover failure or handover ping-pong effect will often occur, which will cause system performance degradation. In order to solve this problem, we propose a grey fuzzy control method to predict the control parameters of handover, which can effectively reduce the number of interruptions and time delay of handover. In this article, we propose different dynamic resource management and predictive handover strategies based on the load of the target base station and the data characteristics of the network connection point. The main purpose of diversifying combinations of heterogeneous network traffic according to different resource requirements is to effectively use radio resources and improve handover efficiency, thereby improving overall system performance. The simulation results indicate that we proposed predictive handover approach for dynamic resource management approach significantly lowers the rates of handover ping-pong, radio link failure and reduces the dropping probability of handover connections.