Adaptive Binarization of Historical Document Images

E. Kavallieratou, E. Stamatatos
{"title":"Adaptive Binarization of Historical Document Images","authors":"E. Kavallieratou, E. Stamatatos","doi":"10.1109/ICPR.2006.216","DOIUrl":null,"url":null,"abstract":"In this paper, we present a binarization technique specifically designed for historical document images. Existing methods for this problem focus on either finding a good global threshold or adapting the threshold for each area to remove smear, strains, uneven illumination etc. We propose a hybrid approach that first applies a global thresholding method and, then, identifies the image areas that are more likely to still contain noise. Each of these areas is re-processed separately to achieve better quality of binarization. We evaluate the proposed approach for different kinds of degradation problems. The results show that our method can handle hard cases while documents already in good condition are not affected drastically","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In this paper, we present a binarization technique specifically designed for historical document images. Existing methods for this problem focus on either finding a good global threshold or adapting the threshold for each area to remove smear, strains, uneven illumination etc. We propose a hybrid approach that first applies a global thresholding method and, then, identifies the image areas that are more likely to still contain noise. Each of these areas is re-processed separately to achieve better quality of binarization. We evaluate the proposed approach for different kinds of degradation problems. The results show that our method can handle hard cases while documents already in good condition are not affected drastically
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
历史文献图像的自适应二值化
在本文中,我们提出了一种专门为历史文档图像设计的二值化技术。现有的方法要么是寻找一个好的全局阈值,要么是为每个区域调整阈值,以去除涂抹、应变、光照不均匀等。我们提出了一种混合方法,首先应用全局阈值法,然后识别更有可能仍然包含噪声的图像区域。每个区域分别重新处理,以获得更好的二值化质量。我们针对不同类型的退化问题评估了所提出的方法。结果表明,该方法可以在文件状态良好的情况下处理较难处理的情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1