An Implementable Scheme for Universal Lossy Compression of Discrete Markov Sources

S. Jalali, A. Montanari, T. Weissman
{"title":"An Implementable Scheme for Universal Lossy Compression of Discrete Markov Sources","authors":"S. Jalali, A. Montanari, T. Weissman","doi":"10.1109/DCC.2009.72","DOIUrl":null,"url":null,"abstract":"We present a new lossy compressor for discrete sources. For coding a source sequence $x^n$, the encoder starts by assigning a certain cost to each reconstruction sequence. It then finds the reconstruction that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of a sequence is given by a linear combination of its empirical probabilities of some order $k+1$ and its distortion relative to the source sequence. The linear structure of the cost in the empirical count  matrix allows the encoder to employ a Viterbi-like algorithm for obtaining the minimizing reconstruction sequence simply. We identify a choice of coefficients for the linear combination in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any Markov source in the limit of large $n$, provided $k$ is increased as $o(\\log n)$.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a new lossy compressor for discrete sources. For coding a source sequence $x^n$, the encoder starts by assigning a certain cost to each reconstruction sequence. It then finds the reconstruction that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of a sequence is given by a linear combination of its empirical probabilities of some order $k+1$ and its distortion relative to the source sequence. The linear structure of the cost in the empirical count  matrix allows the encoder to employ a Viterbi-like algorithm for obtaining the minimizing reconstruction sequence simply. We identify a choice of coefficients for the linear combination in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any Markov source in the limit of large $n$, provided $k$ is increased as $o(\log n)$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散马尔可夫源的通用有损压缩实现方案
提出了一种新的离散源有损压缩器。对于编码源序列$x^n$,编码器首先为每个重构序列分配一定的代价。然后,它找到重构,使该成本最小化,并通过通用无损压缩器将其无损描述给解码器。序列的代价是由它的经验概率(k+1阶)及其相对于源序列的失真的线性组合给出的。经验计数矩阵中代价的线性结构允许编码器采用类似维特比的算法来简单地获得最小重构序列。我们确定了成本函数中线性组合的系数选择,以确保算法在大$n$的极限下普遍实现任何马尔可夫源的最佳率失真性能,前提是$k$增加为$o(\log n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1