{"title":"An Implementable Scheme for Universal Lossy Compression of Discrete Markov Sources","authors":"S. Jalali, A. Montanari, T. Weissman","doi":"10.1109/DCC.2009.72","DOIUrl":null,"url":null,"abstract":"We present a new lossy compressor for discrete sources. For coding a source sequence $x^n$, the encoder starts by assigning a certain cost to each reconstruction sequence. It then finds the reconstruction that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of a sequence is given by a linear combination of its empirical probabilities of some order $k+1$ and its distortion relative to the source sequence. The linear structure of the cost in the empirical count matrix allows the encoder to employ a Viterbi-like algorithm for obtaining the minimizing reconstruction sequence simply. We identify a choice of coefficients for the linear combination in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any Markov source in the limit of large $n$, provided $k$ is increased as $o(\\log n)$.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present a new lossy compressor for discrete sources. For coding a source sequence $x^n$, the encoder starts by assigning a certain cost to each reconstruction sequence. It then finds the reconstruction that minimizes this cost and describes it losslessly to the decoder via a universal lossless compressor. The cost of a sequence is given by a linear combination of its empirical probabilities of some order $k+1$ and its distortion relative to the source sequence. The linear structure of the cost in the empirical count matrix allows the encoder to employ a Viterbi-like algorithm for obtaining the minimizing reconstruction sequence simply. We identify a choice of coefficients for the linear combination in the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance of any Markov source in the limit of large $n$, provided $k$ is increased as $o(\log n)$.