{"title":"Features selection, data mining and finacial risk classification: a comparative study","authors":"Salim Lahmiri","doi":"10.1002/isaf.1395","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of this paper is to compare several predictive models that combine features selection techniques with data mining classifiers in the context of credit risk assessment in terms of accuracy, sensitivity and specificity statistics. The <i>t</i>-statistic, Battacharrayia statistic, the area between the receiver operating characteristic, Wilcoxon statistic, relative entropy, and genetic algorithms were used for the features selection task. The selected features are used to train the support vector machine (SVM) classifier, backpropagation neural network, radial basis function neural network, linear discriminant analysis and naive Bayes classifier. Results from three datasets using a 10-fold cross-validation technique showed that the SVM provides the best accuracy under all features selections techniques adopted in the study for all three datasets. Therefore, the SVM is an attractive classifier to be used in real applications for bankruptcy prediction in corporate finance and financial risk management in financial institutions. In addition, we found that our best results are superior to earlier studies on the same datasets.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"23 4","pages":"265-275"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1395","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 19
Abstract
The aim of this paper is to compare several predictive models that combine features selection techniques with data mining classifiers in the context of credit risk assessment in terms of accuracy, sensitivity and specificity statistics. The t-statistic, Battacharrayia statistic, the area between the receiver operating characteristic, Wilcoxon statistic, relative entropy, and genetic algorithms were used for the features selection task. The selected features are used to train the support vector machine (SVM) classifier, backpropagation neural network, radial basis function neural network, linear discriminant analysis and naive Bayes classifier. Results from three datasets using a 10-fold cross-validation technique showed that the SVM provides the best accuracy under all features selections techniques adopted in the study for all three datasets. Therefore, the SVM is an attractive classifier to be used in real applications for bankruptcy prediction in corporate finance and financial risk management in financial institutions. In addition, we found that our best results are superior to earlier studies on the same datasets.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.