MGB-NET: Orbital Bone Segmentation from Head and Neck CT Images Using Multi-Graylevel-Bone Convolutional Networks

M. Lee, H. Hong, K. Shim, Seongeun Park
{"title":"MGB-NET: Orbital Bone Segmentation from Head and Neck CT Images Using Multi-Graylevel-Bone Convolutional Networks","authors":"M. Lee, H. Hong, K. Shim, Seongeun Park","doi":"10.1109/ISBI.2019.8759424","DOIUrl":null,"url":null,"abstract":"For the reconstruction of the orbital wall of the cranio-maxillofacial surgery, the segmentation of the orbital bone is necessary to support the eye globe position and restore the volume and shape of the orbit. However, due to the wide range of intensities of the orbital bones, conventional U-Net-based segmentation shows under-segmentation in the low-intensity thin bones of the orbital medial wall and orbital floor. In this paper, we propose a multi-gray-bone-Net (MGB-Net) for orbital bone segmentation that improves segmentation accuracy of high-intensity cortical bone as well as low-intensity thin bone in head-and-neck CT images. To prevent under-segmentation of the thin bones of the orbital medial wall and orbital floor, a single orbital bone mask is convert into two masks for cortical bone and thin bone. Two SGB-Nets separately are trained on these masks and each cortical and thin bone segmentation result is integrated to obtain the whole orbital bone segmentation result. Experiments show that our MGB-Net achieves improved performance for whole orbital bone segmentation as well as segmentation of thin bone of orbital medial wall and orbital floor.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For the reconstruction of the orbital wall of the cranio-maxillofacial surgery, the segmentation of the orbital bone is necessary to support the eye globe position and restore the volume and shape of the orbit. However, due to the wide range of intensities of the orbital bones, conventional U-Net-based segmentation shows under-segmentation in the low-intensity thin bones of the orbital medial wall and orbital floor. In this paper, we propose a multi-gray-bone-Net (MGB-Net) for orbital bone segmentation that improves segmentation accuracy of high-intensity cortical bone as well as low-intensity thin bone in head-and-neck CT images. To prevent under-segmentation of the thin bones of the orbital medial wall and orbital floor, a single orbital bone mask is convert into two masks for cortical bone and thin bone. Two SGB-Nets separately are trained on these masks and each cortical and thin bone segmentation result is integrated to obtain the whole orbital bone segmentation result. Experiments show that our MGB-Net achieves improved performance for whole orbital bone segmentation as well as segmentation of thin bone of orbital medial wall and orbital floor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MGB-NET:基于多灰度-骨卷积网络的头颈部CT图像眶骨分割
在颅颌面外科眶壁重建中,需要对眶骨进行分割,以支撑眼球位置,恢复眶的体积和形状。然而,由于眶骨的强度范围广,传统的u - net分割在眶内壁和眶底的低强度薄骨中显示分割不足。在本文中,我们提出了一种多灰骨网(MGB-Net)用于眶骨分割,提高了头颈部CT图像中高强度皮质骨和低强度薄骨的分割精度。为防止眶内壁和眶底薄骨分割不足,将单个眶骨掩膜转换为皮质骨和薄骨两个掩膜。在这些掩模上分别训练两个SGB-Nets,并将每个皮质骨和薄骨分割结果进行综合,得到整个眶骨分割结果。实验表明,我们的MGB-Net在全眶骨分割以及眶内壁和眶底薄骨分割方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1