Towards the automatic classification of traceability links

Chris Mills
{"title":"Towards the automatic classification of traceability links","authors":"Chris Mills","doi":"10.1109/ASE.2017.8115723","DOIUrl":null,"url":null,"abstract":"A wide range of text-based artifacts contribute to software projects (e.g., source code, test cases, use cases, project requirements, interaction diagrams, etc.). Traceability Link Recovery (TLR) is the software task in which relevant documents in these various sets are linked to one another, uncovering information about the project that is not available when considering only the documents themselves. This information is helpful for enabling other tasks such as improving test coverage, impact analysis, and ensuring that system or regulatory requirements are met. However, while traceability links are useful, performing TLR manually is time consuming and fraught with error. Previous work has applied Information Retrieval (IR) and other techniques to reduce the human effort involved; however, that effort remains significant. In this research we seek to take the next step in reducing it by using machine learning (ML) classification models to predict whether a candidate link is valid or invalid without human oversight. Preliminary results show that this approach has promise for accurately recommending valid links; however, there are several challenges that still must be addressed in order to achieve a technique with high enough performance to consider it a viable, completely automated solution.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A wide range of text-based artifacts contribute to software projects (e.g., source code, test cases, use cases, project requirements, interaction diagrams, etc.). Traceability Link Recovery (TLR) is the software task in which relevant documents in these various sets are linked to one another, uncovering information about the project that is not available when considering only the documents themselves. This information is helpful for enabling other tasks such as improving test coverage, impact analysis, and ensuring that system or regulatory requirements are met. However, while traceability links are useful, performing TLR manually is time consuming and fraught with error. Previous work has applied Information Retrieval (IR) and other techniques to reduce the human effort involved; however, that effort remains significant. In this research we seek to take the next step in reducing it by using machine learning (ML) classification models to predict whether a candidate link is valid or invalid without human oversight. Preliminary results show that this approach has promise for accurately recommending valid links; however, there are several challenges that still must be addressed in order to achieve a technique with high enough performance to consider it a viable, completely automated solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现可追溯性环节的自动分类
广泛的基于文本的工件有助于软件项目(例如,源代码、测试用例、用例、项目需求、交互图等)。可追溯性链接恢复(Traceability Link Recovery, TLR)是一项软件任务,在该任务中,这些不同集合中的相关文档相互链接,揭示了仅考虑文档本身时无法获得的有关项目的信息。这些信息有助于实现其他任务,例如改进测试覆盖率、影响分析,以及确保系统或法规需求得到满足。然而,尽管可追溯性链接很有用,但手动执行TLR既耗时又充满错误。以前的工作已经应用了信息检索(IR)和其他技术来减少所涉及的人力;然而,这一努力仍然意义重大。在这项研究中,我们试图采取下一步措施,通过使用机器学习(ML)分类模型来预测候选链接在没有人为监督的情况下是有效还是无效。初步结果表明,该方法有望准确推荐有效链接;然而,为了实现具有足够高性能的技术,将其视为可行的、完全自动化的解决方案,仍然必须解决几个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiQi: A natural language interface for querying software project data A comprehensive study on real world concurrency bugs in Node.js Managing software evolution through semantic history slicing Software performance self-adaptation through efficient model predictive control Privacy-aware data-intensive applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1